A351579 Primes p such that the sum of p and the next two primes is the product of two consecutive primes.
3, 43, 3671, 51473, 53051, 64811, 71143, 121591, 137383, 154111, 161459, 228521, 284573, 344053, 433141, 544403, 679709, 702743, 767071, 995303, 1158139, 1267481, 1301507, 1320023, 1342667, 1512293, 1682987, 1839221, 1982891, 2022101, 2174287, 2198153, 2370943, 2403061, 2770549, 4148923, 4368121
Offset: 1
Keywords
Examples
a(3) = 3671 is a term because 3671, 3673, 3677 are three consecutive primes with 3671+3673+3677 = 11021 = 103*107 and 103 and 107 are two consecutive primes.
Links
- Robert Israel, Table of n, a(n) for n = 1..120
Programs
-
Maple
q:= proc(n) local r,s; r:= nextprime(floor(sqrt(n))); s:= n/r; s::integer and s = prevprime(r) end proc: P:= select(isprime,[2,seq(i,i=3..10^7)]): S:= [0,op(ListTools:-PartialSums(P))]: map(t -> P[t], select(i -> q(S[i+3]-S[i]), [$1..nops(S)-3]));
-
Mathematica
prodQ[n_] := Module[{f = FactorInteger[n]}, f[[;; , 2]] == {1, 1} && f[[2, 1]] == NextPrime[f[[1, 1]]]]; q[p_] := PrimeQ[p] && prodQ[p + Plus @@ NextPrime[p, {1, 2}]]; Select[Range[5*10^6], q] (* Amiram Eldar, Feb 14 2022 *)
-
PARI
isok(p) = {if (isprime(p), my(q=nextprime(p+1), f=factor(p+q+nextprime(q+1))); (omega(f) == 2) && (bigomega(f) == 2) && (f[2,1] == nextprime(f[1,1]+1)););} \\ Michel Marcus, Feb 14 2022
Comments