A351595 Number of odd-length integer partitions y of n such that y_i > y_{i+1} for all even i.
0, 1, 1, 1, 1, 2, 2, 3, 4, 5, 6, 9, 10, 13, 16, 20, 24, 30, 35, 44, 52, 63, 74, 90, 105, 126, 148, 175, 204, 242, 280, 330, 382, 446, 515, 600, 690, 800, 919, 1060, 1214, 1398, 1595, 1830, 2086, 2384, 2711, 3092, 3506, 3988, 4516, 5122, 5788, 6552, 7388, 8345
Offset: 0
Keywords
Examples
The a(1) = 1 through a(12) = 10 partitions (A..C = 10..12): 1 2 3 4 5 6 7 8 9 A B C 221 321 331 332 432 442 443 543 421 431 441 532 542 552 521 531 541 551 642 621 631 632 651 721 641 732 731 741 821 831 33221 921 43221
Crossrefs
The ordered version (compositions) is A000213 shifted right once.
All odd-length partitions are counted by A027193.
The case that is constant at odd indices:
- any length: A351005
- odd length: A351593
- even length: A035457
- opposite any length: A351006
- opposite odd length: A053251
- opposite even length: A351007
For equality instead of inequality:
- any length: A351003
- odd-length: A000009 (except at 0)
- even-length: A351012
- opposite any length: A351004
- opposite odd-length: A351594
- opposite even-length: A035363
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],OddQ[Length[#]]&&And@@Table[#[[i]]>#[[i+1]],{i,2,Length[#]-1,2}]&]],{n,0,30}]