cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351618 Numbers that are both Zuckerman numbers and Smith numbers.

Original entry on oeis.org

4, 1111, 3168, 7119, 31488, 141184, 698112, 1169316, 1621248, 1687392, 1938816, 1967112, 12469248, 12822912, 14112672, 16616448, 41484288, 79817472, 116149248, 121911264, 128894976, 163319328, 166491936, 193916916, 218431488, 247984128, 798142464, 817883136
Offset: 1

Views

Author

Bernard Schott, Feb 15 2022

Keywords

Examples

			3168 is a term since it is a Zuckerman number (3*1*6*8) = 144 is a divisor of 3168 and a Smith number (3168 = 2*2*2*2*2*3*3*11 and 2+2+2+2+2+3+3+1+1 = 3+1+6+8).
		

Crossrefs

Intersection of A007602 and A006753.
Cf. A334527.

Programs

  • Mathematica
    digSum[n_] := Plus @@ IntegerDigits[n]; smithQ[n_] := CompositeQ[n] && Plus @@ (Last@# * digSum[First@#] & /@ FactorInteger[n]) == digSum[n]; zuckQ[n_] := (prodig = Times @@ IntegerDigits[n]) > 0 && Divisible[n, prodig]; Select[Range[10^6], zuckQ[#] && smithQ[#] &] (* Amiram Eldar, Feb 15 2022 *)
  • PARI
    isok(m) = my(d=digits(m)); if (vecmin(d) && !(m % vecprod(d)) && !isprime(m) , my(f=factor(m)); sum(k=1, #f~, sumdigits(f[k,1])*f[k,2]) == vecsum(d)); \\ Michel Marcus, Feb 15 2022

Extensions

More terms from Amiram Eldar, Feb 15 2022