A351638 Number of length n word structures with all distinct run-lengths using an infinite alphabet.
1, 1, 1, 3, 3, 5, 17, 19, 31, 45, 177, 191, 335, 469, 733, 2679, 3063, 5129, 7445, 11431, 15667, 59025, 65301, 112379, 159827, 248185, 336913, 505683, 1660611, 1909901, 3184601, 4576771, 6994351, 9606093, 14229033, 19085255, 61388207, 69587029, 116257501, 164298495, 252820047
Offset: 0
Keywords
Examples
The a(3) = 3 words are 111, 112, 122. The a(4) = 3 words are 1111, 1112, 1222. The word 1122 is not included because both runs have the same length. The a(6) = 17 words are 111111, 111112, 111122, 111211, 111221, 112111, 112221, 112222, 122111, 122211, 122222, 111223, 111233, 112333, 112223, 122333, 122233.
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..500
Programs
-
PARI
P(n) = {Vec(-1 + prod(k=1, n, 1 + y*x^k + O(x*x^n)))} R(u, k) = {k*[subst(serlaplace(p)/y, y, k-1) | p<-u]} seq(n)={my(u=P(n)); concat([1], sum(k=1, n, R(u, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)/r!) ))}
Comments