A351650 Integers m such that digsum(m) divides digsum(m^2) where digsum = sum of digits = A007953.
1, 2, 3, 9, 10, 11, 12, 13, 18, 19, 20, 21, 22, 24, 27, 30, 31, 33, 36, 42, 45, 46, 54, 55, 63, 72, 74, 81, 90, 92, 99, 100, 101, 102, 103, 108, 110, 111, 112, 113, 117, 120, 121, 122, 123, 126, 128, 130, 132, 135, 144, 145, 153, 162, 171, 180, 189, 190, 191, 198
Offset: 1
Examples
digit sum of 42 = 4+2 = 6; then 42^2 = 1764, digit sum of 1764 = 1+7+6+4 = 18; as 6 divides 18, 42 is a term.
Links
- Diophante, A1730 - Des chiffres à sommer pour un entier (in French).
Crossrefs
Programs
-
Mathematica
Select[Range[200], Divisible[Total[IntegerDigits[#^2]], Total[IntegerDigits[#]]] &] (* Amiram Eldar, Feb 16 2022 *)
-
PARI
is(n)=sumdigits(n^2)%sumdigits(n) == 0 \\ David A. Corneth, Feb 16 2022
-
Python
def sd(n): return sum(map(int, str(n))) def ok(n): return sd(n**2)%sd(n) == 0 print([m for m in range(1, 200) if ok(m)]) # Michael S. Branicky, Feb 16 2022
Extensions
More terms from David A. Corneth, Feb 16 2022
Comments