cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351651 a(n) is the quotient obtained when digsum(m^2) is divided by digsum(m), with digsum = sum of digits = A007953 and m = A351650(n).

Original entry on oeis.org

1, 2, 3, 1, 1, 2, 3, 4, 1, 1, 2, 3, 4, 3, 2, 3, 4, 3, 2, 3, 1, 1, 2, 1, 3, 2, 2, 2, 1, 2, 1, 1, 2, 3, 4, 2, 2, 3, 4, 5, 3, 3, 4, 5, 3, 3, 2, 4, 3, 2, 2, 1, 2, 2, 2, 1, 1, 1, 2, 1, 1, 2, 3, 4, 3, 3, 2, 3, 4, 5, 3, 2, 4, 5, 2, 2, 3, 3, 3, 3, 2, 2, 2, 3, 2, 1, 3, 4, 3, 4, 5
Offset: 1

Views

Author

Bernard Schott, Feb 16 2022

Keywords

Comments

All positive integers are terms of this sequence (see A280012).
a(n) = 1 iff m = A351650(n) is a term of A058369 \ {0}.
a(n) = digsum(n) if m = A351650(n) is a term of A061909 \ {0}.

Examples

			A351650(8) = 13, then digsum(13) = 1+3 = 4 while digsum(13^2) = digsum(169) = 1+6+9 = 16; hence, a(8) = 16/4 = 4.
		

Crossrefs

Programs

  • Mathematica
    Select[Total[IntegerDigits[#^2]]/Total[IntegerDigits[#]]& /@ Range[300], IntegerQ] (* Amiram Eldar, Feb 16 2022 *)
  • PARI
    lista(nn) = {my(list = List(), q); for (n=1, nn, if (denominator(q=sumdigits(n^2)/sumdigits(n))==1, listput(list, q));); Vec(list);} \\ Michel Marcus, Feb 16 2022

Formula

a(n) = A004159(A351650(n)) / A007953(A351650(n)).

Extensions

More terms from Michel Marcus, Feb 16 2022