cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351655 Dirichlet g.f.: Product_{p prime} 1 / (1 - p^(-s) - p^(-2*s) - p^(-3*s)).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 4, 2, 1, 1, 2, 1, 1, 1, 7, 1, 2, 1, 2, 1, 1, 1, 4, 2, 1, 4, 2, 1, 1, 1, 13, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 2, 2, 1, 1, 7, 2, 2, 1, 2, 1, 4, 1, 4, 1, 1, 1, 2, 1, 1, 2, 24, 1, 1, 1, 2, 1, 1, 1, 8, 1, 1, 2, 2, 1, 1, 1, 7, 7, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 16 2022

Keywords

Crossrefs

Programs

  • Mathematica
    t[n_] := t[n] = t[n-1] + t[n-2] + t[n-3]; t[0] = t[1] = 0; t[2] = 1; f[p_, e_] := t[e+2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 18 2023 *)
  • PARI
    for(n=1, 87, print1(direuler(p=2, n, 1/(1 - X - X^2 - X^3))[n], ", "))

Formula

Multiplicative with a(p^e) = A000073(e+2).