A351682 Prime numbers p such that the (p-1)-st Bell number B(p-1) is a primitive root modulo p.
2, 3, 11, 13, 17, 19, 29, 31, 47, 53, 71, 103, 113, 127, 131, 137, 139, 149, 173, 179, 181, 191, 211, 233, 239, 241, 251, 257, 263, 269, 293, 317, 347, 367, 379, 401, 431, 439, 449, 461, 503, 509, 523, 541, 557, 587, 607, 617, 619, 647, 653, 683, 691, 733, 743, 761, 773, 797, 821, 823, 827, 853, 859, 881, 919, 929
Offset: 1
Keywords
Examples
For n = 2 one has a(2) = 3 since B(2) = 2 is a primitive root modulo 3.
Links
- Robert Israel, Table of n, a(n) for n = 1..500
Programs
-
Maple
filter:= proc(p) local b; b:= combinat:-bell(p-1); numtheory:-order(b,p) = p-1 end proc: select(filter, [seq(ithprime(i),i=1..200)]); # Robert Israel, May 04 2023
Extensions
Corrected by Robert Israel, May 04 2023
Comments