cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A351713 Numbers whose binary and minimal Lucas representations are both palindromic.

Original entry on oeis.org

0, 9, 31, 975, 297097, 816867, 4148165871, 152488124529, 1632977901693, 11162529166917, 11925833175477, 3047549778123957, 3894487365191355, 8920885515768255
Offset: 1

Views

Author

Amiram Eldar, Feb 17 2022

Keywords

Examples

			   n    a(n)       A007088(a(n))                A130310(a(n))
   ----------------------------------------------------------
   1       0                   0                            0
   2       9                1001                        10001
   3      31               11111                     10000001
   4     975          1111001111              100010000010001
   5  297097 1001000100010001001  100001000000101000000100001
		

Crossrefs

Intersection of A006995 and A351712.
Subsequence of A054770.
Similar sequences: A095309, A331193, A331894, A351718.

Programs

  • Mathematica
    lucasPalQ[n_] := Module[{s = {}, m = n, k = 1}, While[m > 0, If[m == 1, k = 1; AppendTo[s, k]; m = 0, If[m == 2, k = 0; AppendTo[s, k]; m = 0, While[LucasL[k] <= m, k++]; k--; AppendTo[s, k]; m -= LucasL[k]; k = 1]]]; PalindromeQ[IntegerDigits[Total[2^s], 2]]]; Join[{0}, Select[Range[1, 10^6, 2], PalindromeQ[IntegerDigits[#, 2]] && lucasPalQ[#] &]]

A352088 Numbers whose binary and minimal tribonacci representations are both palindromic.

Original entry on oeis.org

0, 1, 3, 5, 45, 2193, 7671, 35889, 53835, 74825, 3026205, 31953871, 86582437, 117169915, 128873391, 701373669, 868430067, 15262037703, 45305389845, 104484026691, 614071181169, 14894476590363, 24382189266573, 86808432666553, 869188423288227, 1352557858988953
Offset: 1

Views

Author

Amiram Eldar, Mar 04 2022

Keywords

Examples

			The first 5 terms are:
  n  a(n)  A007088(a(n))  A278038(a(n))
  -------------------------------------
  1     0              0              0
  2     1              1              1
  3     3             11             11
  4     5            101            101
  5    45         101101        1000001
		

Crossrefs

Intersection of A006995 and A352087.
Similar sequences: A095309, A331193, A331894, A351713, A351718.

Programs

  • Mathematica
    t[1] = 1; t[2] = 2; t[3] = 4; t[n_] := t[n] = t[n - 1] + t[n - 2] + t[n - 3]; tribPalQ[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[t[k] <= m, k++]; k--; AppendTo[s, k]; m -= t[k]; k = 1]; PalindromeQ[FromDigits @ IntegerDigits[Total[2^(s - 1)], 2]]]; Join[{0}, Select[Range[1, 10^5, 2], PalindromeQ[IntegerDigits[#, 2]] && tribPalQ[#] &]]

A352106 Numbers whose binary and maximal tribonacci representations are both palindromic.

Original entry on oeis.org

0, 1, 3, 5, 7, 27, 51, 325, 2193, 3735, 23709, 35889, 53835, 589833, 1294265, 17291201, 80719769, 1274288105, 23157444917, 23635236877, 230684552043, 1218891196337, 1722894010643, 2544113575977, 93096801594005, 175482093541881, 256924005422487, 372295593308821
Offset: 1

Views

Author

Amiram Eldar, Mar 05 2022

Keywords

Examples

			The first 5 terms are:
   n  a(n)  A007088(a(n))  A352103(a(n))
   -  ----  -------------  -------------
   1     0              0              0
   2     1              1              1
   3     3             11             11
   4     5            101            101
   5     7            111            111
   6    27          11011          11111
   7    51         110011         111111
   8   325      101000101      111111111
   9  2193   100010010001  1001101011001
  10  3735   111010010111  1111111111111
		

Crossrefs

Intersection of A006995 and A352105.
Similar sequences: A095309, A331193, A331894, A351713, A351718, A352088.

Programs

  • Mathematica
    t[1] = 1; t[2] = 2; t[3] = 4; t[n_] := t[n] = t[n - 1] + t[n - 2] + t[n - 3]; trib[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[t[k] <= m, k++]; k--; AppendTo[s, k]; m -= t[k]; k = 1]; IntegerDigits[Total[2^(s - 1)], 2]]; lazyTribPalQ[n_] := Module[{v = trib[n]}, nv = Length[v]; i = 1; While[i <= nv - 3, If[v[[i ;; i + 3]] == {1, 0, 0, 0}, v[[i ;; i + 3]] = {0, 1, 1, 1}; If[i > 3, i -= 4]]; i++]; i = Position[v, _?(# > 0 &)]; If[i == {}, True, PalindromeQ[FromDigits[v[[i[[1, 1]] ;; -1]]]]]]; Join[{0}, Select[Range[1, 10^5, 2], PalindromeQ[IntegerDigits[#, 2]] && lazyTribPalQ[#] &]]
Showing 1-3 of 3 results.