cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A351721 Starts of runs of 3 consecutive lazy-Lucas-Niven numbers (A351719).

Original entry on oeis.org

607068, 640618, 665720, 900921, 1000880, 1375940, 1505878, 1537250, 1924224, 1938508, 1966338, 2527998, 3394224, 3935424, 4242624, 4476624, 4747224, 4794624, 5351367, 5401824, 5526024, 5636356, 5992298, 6103900, 6343298, 7028362, 7113024, 8879424, 8998262, 9431424
Offset: 1

Views

Author

Amiram Eldar, Feb 17 2022

Keywords

Comments

Conjecture: There are no runs of 4 consecutive lazy-Lucas-Niven numbers (checked up to 3*10^9).

Examples

			607068 is a term since 607068, 607069 and 607070 are all divisible by the number of terms in their maximal representation:
     k                   A130311(k)  A131343(k)  k/A131343(k)
-------------------------------------------------------------
607068  111010101010101011110111101         18          33726
607069  111010101010101011110111111         19          31951
607070  111010101010101011111010110         17          35710
		

Crossrefs

A351715 Numbers k such that k and k + 1 are both Lucas-Niven numbers (A351714).

Original entry on oeis.org

1, 2, 3, 6, 7, 10, 11, 29, 39, 47, 57, 80, 123, 129, 134, 152, 159, 170, 176, 199, 206, 245, 279, 326, 384, 387, 398, 404, 521, 531, 543, 560, 579, 615, 644, 651, 684, 755, 843, 849, 854, 872, 879, 890, 896, 944, 1024, 1052, 1064, 1070, 1071, 1095, 1350, 1382
Offset: 1

Views

Author

Amiram Eldar, Feb 17 2022

Keywords

Examples

			6 is a term since 6 and 7 are both Lucas-Niven numbers: the minimal Lucas representation of 6, A130310(6) = 1001, has 2 1's and 6 is divisible by 2, and the minimal Lucas representation of 7, A130310(7) = 10000, has one 1 and 7 is divisible by 1.
		

Crossrefs

Subsequence of A351714.
A351716 is a subsequence.

Programs

  • Mathematica
    lucasNivenQ[n_] := Module[{s = {}, m = n, k = 1}, While[m > 0, If[m == 1, k = 1; AppendTo[s, k]; m = 0, If[m == 2, k = 0; AppendTo[s, k]; m = 0, While[LucasL[k] <= m, k++]; k--; AppendTo[s, k]; m -= LucasL[k]; k = 1]]]; Divisible[n, Plus @@ IntegerDigits[Total[2^s], 2]]]; Select[Range[1400], And @@ lucasNivenQ/@{#, #+1} &]

A351719 Lazy-Lucas-Niven numbers: numbers divisible by the number of terms in their maximal (or lazy) representation in terms of the Lucas numbers (A130311).

Original entry on oeis.org

1, 2, 4, 6, 9, 12, 16, 20, 25, 40, 42, 54, 60, 66, 78, 84, 91, 96, 104, 112, 120, 126, 144, 154, 161, 168, 175, 176, 180, 182, 184, 192, 203, 210, 216, 217, 224, 232, 234, 240, 243, 264, 270, 280, 288, 304, 306, 310, 315, 320, 322, 328, 336, 344, 350, 360, 378
Offset: 1

Views

Author

Amiram Eldar, Feb 17 2022

Keywords

Comments

Numbers k such that A131343(k) | k.

Examples

			6 is a term since its maximal Lucas representation, A130311(6) = 111, has A131343(6) = 3 1's and 6 is divisible by 3.
		

Crossrefs

Programs

  • Mathematica
    lazy = Select[IntegerDigits[Range[3000], 2], SequenceCount[#, {0, 0}] == 0 &]; t = Total[# * Reverse @ LucasL[Range[0, Length[#] - 1]]] & /@ lazy; s = FromDigits /@ lazy[[TakeWhile[Flatten[FirstPosition[t, #] & /@ Range[Max[t]]], NumberQ]]]; Position[Divisible[Range[Length[s]], Plus @@@ IntegerDigits[s]], True] // Flatten

A352090 Numbers k such that k and k+1 are both tribonacci-Niven numbers (A352089).

Original entry on oeis.org

1, 6, 7, 12, 13, 20, 26, 27, 39, 68, 75, 80, 81, 87, 115, 128, 135, 149, 176, 184, 185, 195, 204, 215, 224, 230, 236, 243, 264, 278, 284, 291, 344, 364, 399, 447, 506, 507, 519, 548, 555, 560, 575, 595, 615, 635, 656, 664, 665, 684, 704, 725, 744, 777, 804, 824
Offset: 1

Views

Author

Amiram Eldar, Mar 04 2022

Keywords

Comments

Numbers k such that A278043(k) | k and A278043(k+1) | k+1.
The odd tribonacci numbers, A000073(A042964(m)), are all terms.

Examples

			6 is a term since 6 and 7 are both tribonacci-Niven numbers: the minimal tribonacci representation of 6, A278038(6) = 110, has 2 1's and 6 is divisible by 2, and the minimal tribonacci representation of 7, A278038(7) = 1000, has one 1 and 7 is divisible by 1.
		

Crossrefs

Programs

  • Mathematica
    t[1] = 1; t[2] = 2; t[3] = 4; t[n_] := t[n] = t[n - 1] + t[n - 2] + t[n - 3]; q[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[t[k] <= m, k++]; k--; AppendTo[s, k]; m -= t[k]; k = 1]; Divisible[n, DigitCount[Total[2^(s - 1)], 2, 1]]]; Select[Range[1000], q[#] && q[# + 1] &]

A352108 Numbers k such that k and k+1 are both lazy-tribonacci-Niven numbers (A352107).

Original entry on oeis.org

1, 20, 39, 75, 115, 135, 155, 175, 176, 184, 204, 215, 264, 567, 684, 704, 725, 791, 846, 872, 1089, 1104, 1115, 1134, 1183, 1184, 1211, 1224, 1407, 1575, 1840, 1880, 2064, 2075, 2151, 2191, 2232, 2259, 2260, 2415, 2529, 2583, 2624, 2780, 2820, 2848, 2888, 2988
Offset: 1

Views

Author

Amiram Eldar, Mar 05 2022

Keywords

Examples

			20 is a term since 20 and 21 are both lazy-tribonacci-Niven numbers: the maximal tribonacci representation of 20, A352103(20) = 10111, has 4 1's and 20 is divisible by 4, and the maximal tribonacci representation of 21, A352103(20) = 11001, has 3 1's and 21 is divisible by 3.
		

Crossrefs

Subsequence of A352107.
Subsequences: A352109, A352110.

Programs

  • Mathematica
    t[1] = 1; t[2] = 2; t[3] = 4; t[n_] := t[n] = t[n - 1] + t[n - 2] + t[n - 3]; trib[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[t[k] <= m, k++]; k--; AppendTo[s, k]; m -= t[k]; k = 1]; IntegerDigits[Total[2^(s - 1)], 2]]; q[n_] := Module[{v = trib[n]}, nv = Length[v]; i = 1; While[i <= nv - 3, If[v[[i ;; i + 3]] == {1, 0, 0, 0}, v[[i ;; i + 3]] = {0, 1, 1, 1}; If[i > 3, i -= 4]]; i++]; i = Position[v, _?(# > 0 &)]; If[i == {}, False, Divisible[n, Total[v[[i[[1, 1]] ;; -1]]]]]]; Select[Range[3000], q[#] && q[# + 1] &]

A352321 Numbers k such that k and k+1 are both Pell-Niven numbers (A352320).

Original entry on oeis.org

1, 4, 5, 9, 14, 28, 29, 33, 39, 63, 87, 110, 111, 115, 125, 140, 164, 168, 169, 183, 255, 275, 308, 338, 410, 444, 483, 507, 564, 579, 584, 704, 791, 984, 985, 999, 1004, 1024, 1025, 1115, 1134, 1154, 1164, 1211, 1265, 1308, 1323, 1351, 1395, 1415, 1424, 1491
Offset: 1

Views

Author

Amiram Eldar, Mar 12 2022

Keywords

Comments

All the odd-indexed Pell numbers (A001653) are terms.

Examples

			4 is a term since 4 and 5 are both Pell-Niven numbers: the minimal Pell representation of 4, A317204(20) = 20, has the sum of digits 2+0 = 2 and 4 is divisible by 2, and the minimal Pell representation of 5, A317204(5) = 100, has the sum of digits 1+0+0 = 1 and 5 is divisible by 1.
		

Crossrefs

Programs

  • Mathematica
    pell[1] = 1; pell[2] = 2; pell[n_] := pell[n] = 2*pell[n - 1] + pell[n - 2]; q[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[pell[k] <= m, k++]; k--; AppendTo[s, k]; m -= pell[k]; k = 1]; Divisible[n, Plus @@ IntegerDigits[ Total[3^(s - 1)], 3]]]; Select[Range[1500], q[#] && q[#+1] &]

A352343 Numbers k such that k and k+1 are both lazy-Pell-Niven numbers (A352342).

Original entry on oeis.org

1, 24, 63, 209, 216, 459, 560, 584, 656, 729, 999, 1110, 1269, 1728, 1859, 1989, 2100, 2196, 2197, 2255, 2650, 2651, 2820, 3443, 3497, 4080, 4563, 5291, 5784, 5785, 5837, 5928, 6252, 6383, 7344, 7657, 7812, 8150, 8203, 8459, 8670, 8749, 9251, 9295, 9372, 9464, 9840, 9884
Offset: 1

Views

Author

Amiram Eldar, Mar 12 2022

Keywords

Comments

Numbers k such that A352340(k) | k and A352340(k+1) | k+1.

Examples

			24 is a term since 24 and 25 are both lazy-Pell-Niven numbers: the maximal Pell representation of 24, A352339(24) = 1210, has the sum of digits A352340(24) = 1+2+1+0 = 4 and 24 is divisible by 4, and the maximal Pell representation of 25, A352339(25) = 1211, has the sum of digits A352340(25) = 1+2+1+1 = 5 and 25 is divisible by 5.
		

Crossrefs

Programs

  • Mathematica
    pell[1] = 1; pell[2] = 2; pell[n_] := pell[n] = 2*pell[n - 1] + pell[n - 2]; pellp[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[pell[k] <= m, k++]; k--; AppendTo[s, k]; m -= pell[k]; k = 1]; IntegerDigits[Total[3^(s - 1)], 3]]; lazyPellNivenQ[n_] := Module[{v = pellp[n]}, nv = Length[v]; i = 1; While[i <= nv - 2, If[v[[i]] > 0 && v[[i + 1]] == 0 && v[[i + 2]] < 2, v[[i ;; i + 2]] += {-1, 2, 1}; If[i > 2, i -= 3]]; i++]; i = Position[v, _?(# > 0 &)]; Divisible[n, Plus @@ v[[i[[1, 1]] ;; -1]]]]; Select[Range[10^4], lazyPellNivenQ[#] && lazyPellNivenQ[#+1] &]

A352509 Numbers k such that k and k+1 are both Catalan-Niven numbers (A352508).

Original entry on oeis.org

1, 4, 5, 9, 32, 44, 55, 56, 134, 144, 145, 146, 155, 184, 234, 324, 329, 414, 426, 429, 434, 455, 511, 512, 603, 636, 930, 1004, 1014, 1160, 1183, 1215, 1287, 1308, 1448, 1472, 1505, 1562, 1595, 1808, 1854, 1967, 1985, 1995, 2051, 2075, 2096, 2135, 2165, 2255
Offset: 1

Views

Author

Amiram Eldar, Mar 19 2022

Keywords

Examples

			4 is a term since 4 and 5 are both Catalan-Niven numbers: the Catalan representation of 4, A014418(20) = 20, has the sum of digits 2+0 = 2 and 4 is divisible by 2, and the Catalan representation of 5, A014418(5) = 100, has the sum of digits 1+0+0 = 1 and 5 is divisible by 1.
		

Crossrefs

Programs

  • Mathematica
    c[n_] := c[n] = CatalanNumber[n]; q[n_] := Module[{s = {}, m = n, i}, While[m > 0, i = 1; While[c[i] <= m, i++]; i--; m -= c[i]; AppendTo[s, i]]; Divisible[n, Plus @@ IntegerDigits[Total[4^(s - 1)], 4]]]; Select[Range[2300], q[#] && q[#+1] &]

A364217 Numbers k such that k and k+1 are both Jacobsthal-Niven numbers (A364216).

Original entry on oeis.org

1, 2, 3, 8, 11, 14, 15, 27, 32, 42, 43, 44, 45, 51, 56, 75, 86, 87, 92, 95, 99, 104, 125, 128, 135, 144, 155, 171, 176, 182, 183, 195, 204, 264, 267, 275, 287, 305, 344, 363, 375, 387, 428, 444, 455, 474, 497, 512, 524, 535, 544, 545, 552, 555, 581, 605, 623, 639
Offset: 1

Views

Author

Amiram Eldar, Jul 14 2023

Keywords

Comments

A001045(2*n+1) = A007583(n) = (2^(2*n+1) + 1)/3 is a term for n >= 0, since its representation is 2*n 1's, so A364215(A001045(2*n+1)) = 1 divides A001045(2*n+1), and the representation of A001045(2*n+1) + 1 = (2^(2*n+1) + 4)/3 is max(2*n-1, 0) 0's between 2 1's, so A364215(A001045(2*n+1) + 1) = 2 which divides (2^(2*n+1) + 4)/3.

Crossrefs

Programs

  • Mathematica
    consecJacobsthalNiven[kmax_, len_] := Module[{m = 1, c = Table[False, {len}], s = {}}, Do[c = Join[Rest[c], {Divisible[k, DigitCount[m, 2, 1]]}]; While[m++; OddQ[IntegerExponent[m, 2]]]; If[And @@ c, AppendTo[s, k - len + 1]], {k, 1, kmax}]; s]; consecJacobsthalNiven[640, 2]
  • PARI
    lista(kmax, len) = {my(m = 1, c = vector(len)); for(k = 1, kmax, c = concat(vecextract(c, "^1"), !(k % sumdigits(m, 2))); until(valuation(m, 2)%2 == 0, m++); if(vecsum(c) == len, print1(k-len+1, ", ")));}
    lista(640, 2)

A364380 Numbers k such that k and k+1 are both greedy Jacobsthal-Niven numbers (A364379).

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 9, 10, 11, 14, 15, 20, 21, 26, 27, 32, 42, 43, 44, 45, 51, 56, 68, 75, 84, 85, 86, 87, 92, 99, 104, 105, 111, 115, 116, 125, 128, 135, 144, 155, 170, 171, 176, 182, 183, 195, 204, 213, 219, 224, 260, 264, 267, 275, 304, 305, 324, 329, 341, 344
Offset: 1

Views

Author

Amiram Eldar, Jul 21 2023

Keywords

Comments

The positive Jacobsthal numbers, A001045(n) for n >= 1, are terms since their representation in Jacobsthal greedy base is one 1 followed by n-1 0's, so A265745(A001045(n)) = 1 divides A001045(n), and the representation of A001045(n) + 1 is 2 if n <= 2 and otherwise n-3 0's between two 1's, so A265745(A001045(n) + 1) = 2 which divides A001045(n) + 1.

Crossrefs

Programs

  • Mathematica
    consecGreedyJN[kmax_, len_] := Module[{m = 1, c = Table[False, {len}], s = {}}, Do[c = Join[Rest[c], {greedyJacobNivenQ[k]}]; If[And @@ c, AppendTo[s, k - len + 1]], {k, 1, kmax}]; s]; consecGreedyJN[350, 2] (* using the function greedyJacobNivenQ[n] from A364379 *)
  • PARI
    lista(kmax, len) = {my(c = vector(len)); for(k = 1, kmax, c = concat(vecextract(c, "^1"), isA364379(k)); if(vecsum(c) == len, print1(k-len+1, ", ")));} \\ using the function isA364379(n) from A364379
    lista(350, 2)
Showing 1-10 of 13 results. Next