cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A352107 Lazy-tribonacci-Niven numbers: numbers that are divisible by the number of terms in their maximal (or lazy) representation in terms of the tribonacci numbers (A352103).

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 18, 20, 21, 24, 28, 30, 33, 36, 39, 40, 48, 50, 56, 60, 68, 70, 72, 75, 76, 80, 90, 96, 100, 108, 115, 116, 120, 135, 136, 140, 150, 155, 156, 160, 162, 168, 175, 176, 177, 180, 184, 185, 188, 195, 198, 204, 205, 208, 215, 216, 225, 231, 260
Offset: 1

Views

Author

Amiram Eldar, Mar 05 2022

Keywords

Comments

Numbers k such that A352104(k) | k.

Examples

			6 is a term since its maximal tribonacci representation, A352103(6) = 110, has A352104(6) = 2 1's and 6 is divisible by 2.
		

Crossrefs

Programs

  • Mathematica
    t[1] = 1; t[2] = 2; t[3] = 4; t[n_] := t[n] = t[n - 1] + t[n - 2] + t[n - 3]; trib[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[t[k] <= m, k++]; k--; AppendTo[s, k]; m -= t[k]; k = 1]; IntegerDigits[Total[2^(s - 1)], 2]]; q[n_] := Module[{v = trib[n]}, nv = Length[v]; i = 1; While[i <= nv - 3, If[v[[i ;; i + 3]] == {1, 0, 0, 0}, v[[i ;; i + 3]] = {0, 1, 1, 1}; If[i > 3, i -= 4]]; i++]; i = Position[v, _?(# > 0 &)]; If[i == {}, False, Divisible[n, Total[v[[i[[1, 1]] ;; -1]]]]]]; Select[Range[300], q]

A352109 Starts of runs of 3 consecutive lazy-tribonacci-Niven numbers (A352107).

Original entry on oeis.org

175, 1183, 2259, 5290, 12969, 21130, 51820, 70629, 78090, 79540, 81818, 129648, 160224, 169234, 180908, 228240, 238574, 249494, 278628, 332891, 376335, 383866, 398650, 399644, 454090, 550380, 565200, 683448, 683604, 694274, 728895, 754390, 782110, 809830, 837550
Offset: 1

Views

Author

Amiram Eldar, Mar 05 2022

Keywords

Examples

			175 is a term since 175, 176 and 177 are all divisible by the number of terms in their maximal tribonacci representation:
    k  A352103(k)  A352104(k)  k/A352104(k)
  ---  ----------  ----------  ------------
  175    11111110           7            25
  176    11111111           8            22
  177   100100100           3            59
		

Crossrefs

Subsequence of A352107 and A352108.
A352110 is a subsequence.

Programs

  • Mathematica
    t[1] = 1; t[2] = 2; t[3] = 4; t[n_] := t[n] = t[n - 1] + t[n - 2] + t[n - 3]; trib[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[t[k] <= m, k++]; k--; AppendTo[s, k]; m -= t[k]; k = 1]; IntegerDigits[Total[2^(s - 1)], 2]]; lazyTriboNivenQ[n_] := Module[{v = trib[n]}, nv = Length[v]; i = 1; While[i <= nv - 3, If[v[[i ;; i + 3]] == {1, 0, 0, 0}, v[[i ;; i + 3]] = {0, 1, 1, 1}; If[i > 3, i -= 4]]; i++]; i = Position[v, ?(# > 0 &)]; If[i == {}, False, Divisible[n, Total[v[[i[[1, 1]] ;; -1]]]]]]; seq[count, nConsec_] := Module[{tri = lazyTriboNivenQ /@ Range[nConsec], s = {}, c = 0, k = nConsec + 1}, While[c < count, If[And @@ tri, c++; AppendTo[s, k - nConsec]]; tri = Join[Rest[tri], {lazyTriboNivenQ[k]}]; k++]; s]; seq[30, 3]

A352110 Starts of runs of 4 consecutive lazy-tribonacci-Niven numbers (A352107).

Original entry on oeis.org

1081455, 1976895, 2894175, 5886255, 6906912, 15604110, 16588752, 19291479, 20387232, 25919439, 32394942, 34801557, 35654175, 36813582, 36907899, 39117219, 41407392, 43520832, 46181055, 47954499, 52145952, 54524319, 54815397, 56733639, 57775102, 58942959, 59292177
Offset: 1

Views

Author

Amiram Eldar, Mar 05 2022

Keywords

Comments

Conjecture: There are no runs of 5 consecutive lazy-tribonacci-Niven numbers (checked up to 6*10^9).

Examples

			1081455 is a term since 1081455, 1081456, 1081457 and 1081458 are all divisible by the number of terms in their maximal tribonacci representation:
        k               A352103(k)   A352104(k)    k/A352104(k)
  -------  -----------------------   ----------    ------------
  1081455  10101011011110110011110           15           72097
  1081456  10101011011110110011111           16           67591
  1081457  10101011011110110100100           13           83189
  1081458  10101011011110110100101           14           77247
		

Crossrefs

Subsequence of A352107, A352108 and A352109.

A352321 Numbers k such that k and k+1 are both Pell-Niven numbers (A352320).

Original entry on oeis.org

1, 4, 5, 9, 14, 28, 29, 33, 39, 63, 87, 110, 111, 115, 125, 140, 164, 168, 169, 183, 255, 275, 308, 338, 410, 444, 483, 507, 564, 579, 584, 704, 791, 984, 985, 999, 1004, 1024, 1025, 1115, 1134, 1154, 1164, 1211, 1265, 1308, 1323, 1351, 1395, 1415, 1424, 1491
Offset: 1

Views

Author

Amiram Eldar, Mar 12 2022

Keywords

Comments

All the odd-indexed Pell numbers (A001653) are terms.

Examples

			4 is a term since 4 and 5 are both Pell-Niven numbers: the minimal Pell representation of 4, A317204(20) = 20, has the sum of digits 2+0 = 2 and 4 is divisible by 2, and the minimal Pell representation of 5, A317204(5) = 100, has the sum of digits 1+0+0 = 1 and 5 is divisible by 1.
		

Crossrefs

Programs

  • Mathematica
    pell[1] = 1; pell[2] = 2; pell[n_] := pell[n] = 2*pell[n - 1] + pell[n - 2]; q[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[pell[k] <= m, k++]; k--; AppendTo[s, k]; m -= pell[k]; k = 1]; Divisible[n, Plus @@ IntegerDigits[ Total[3^(s - 1)], 3]]]; Select[Range[1500], q[#] && q[#+1] &]

A352343 Numbers k such that k and k+1 are both lazy-Pell-Niven numbers (A352342).

Original entry on oeis.org

1, 24, 63, 209, 216, 459, 560, 584, 656, 729, 999, 1110, 1269, 1728, 1859, 1989, 2100, 2196, 2197, 2255, 2650, 2651, 2820, 3443, 3497, 4080, 4563, 5291, 5784, 5785, 5837, 5928, 6252, 6383, 7344, 7657, 7812, 8150, 8203, 8459, 8670, 8749, 9251, 9295, 9372, 9464, 9840, 9884
Offset: 1

Views

Author

Amiram Eldar, Mar 12 2022

Keywords

Comments

Numbers k such that A352340(k) | k and A352340(k+1) | k+1.

Examples

			24 is a term since 24 and 25 are both lazy-Pell-Niven numbers: the maximal Pell representation of 24, A352339(24) = 1210, has the sum of digits A352340(24) = 1+2+1+0 = 4 and 24 is divisible by 4, and the maximal Pell representation of 25, A352339(25) = 1211, has the sum of digits A352340(25) = 1+2+1+1 = 5 and 25 is divisible by 5.
		

Crossrefs

Programs

  • Mathematica
    pell[1] = 1; pell[2] = 2; pell[n_] := pell[n] = 2*pell[n - 1] + pell[n - 2]; pellp[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[pell[k] <= m, k++]; k--; AppendTo[s, k]; m -= pell[k]; k = 1]; IntegerDigits[Total[3^(s - 1)], 3]]; lazyPellNivenQ[n_] := Module[{v = pellp[n]}, nv = Length[v]; i = 1; While[i <= nv - 2, If[v[[i]] > 0 && v[[i + 1]] == 0 && v[[i + 2]] < 2, v[[i ;; i + 2]] += {-1, 2, 1}; If[i > 2, i -= 3]]; i++]; i = Position[v, _?(# > 0 &)]; Divisible[n, Plus @@ v[[i[[1, 1]] ;; -1]]]]; Select[Range[10^4], lazyPellNivenQ[#] && lazyPellNivenQ[#+1] &]

A352509 Numbers k such that k and k+1 are both Catalan-Niven numbers (A352508).

Original entry on oeis.org

1, 4, 5, 9, 32, 44, 55, 56, 134, 144, 145, 146, 155, 184, 234, 324, 329, 414, 426, 429, 434, 455, 511, 512, 603, 636, 930, 1004, 1014, 1160, 1183, 1215, 1287, 1308, 1448, 1472, 1505, 1562, 1595, 1808, 1854, 1967, 1985, 1995, 2051, 2075, 2096, 2135, 2165, 2255
Offset: 1

Views

Author

Amiram Eldar, Mar 19 2022

Keywords

Examples

			4 is a term since 4 and 5 are both Catalan-Niven numbers: the Catalan representation of 4, A014418(20) = 20, has the sum of digits 2+0 = 2 and 4 is divisible by 2, and the Catalan representation of 5, A014418(5) = 100, has the sum of digits 1+0+0 = 1 and 5 is divisible by 1.
		

Crossrefs

Programs

  • Mathematica
    c[n_] := c[n] = CatalanNumber[n]; q[n_] := Module[{s = {}, m = n, i}, While[m > 0, i = 1; While[c[i] <= m, i++]; i--; m -= c[i]; AppendTo[s, i]]; Divisible[n, Plus @@ IntegerDigits[Total[4^(s - 1)], 4]]]; Select[Range[2300], q[#] && q[#+1] &]

A364217 Numbers k such that k and k+1 are both Jacobsthal-Niven numbers (A364216).

Original entry on oeis.org

1, 2, 3, 8, 11, 14, 15, 27, 32, 42, 43, 44, 45, 51, 56, 75, 86, 87, 92, 95, 99, 104, 125, 128, 135, 144, 155, 171, 176, 182, 183, 195, 204, 264, 267, 275, 287, 305, 344, 363, 375, 387, 428, 444, 455, 474, 497, 512, 524, 535, 544, 545, 552, 555, 581, 605, 623, 639
Offset: 1

Views

Author

Amiram Eldar, Jul 14 2023

Keywords

Comments

A001045(2*n+1) = A007583(n) = (2^(2*n+1) + 1)/3 is a term for n >= 0, since its representation is 2*n 1's, so A364215(A001045(2*n+1)) = 1 divides A001045(2*n+1), and the representation of A001045(2*n+1) + 1 = (2^(2*n+1) + 4)/3 is max(2*n-1, 0) 0's between 2 1's, so A364215(A001045(2*n+1) + 1) = 2 which divides (2^(2*n+1) + 4)/3.

Crossrefs

Programs

  • Mathematica
    consecJacobsthalNiven[kmax_, len_] := Module[{m = 1, c = Table[False, {len}], s = {}}, Do[c = Join[Rest[c], {Divisible[k, DigitCount[m, 2, 1]]}]; While[m++; OddQ[IntegerExponent[m, 2]]]; If[And @@ c, AppendTo[s, k - len + 1]], {k, 1, kmax}]; s]; consecJacobsthalNiven[640, 2]
  • PARI
    lista(kmax, len) = {my(m = 1, c = vector(len)); for(k = 1, kmax, c = concat(vecextract(c, "^1"), !(k % sumdigits(m, 2))); until(valuation(m, 2)%2 == 0, m++); if(vecsum(c) == len, print1(k-len+1, ", ")));}
    lista(640, 2)

A364380 Numbers k such that k and k+1 are both greedy Jacobsthal-Niven numbers (A364379).

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 9, 10, 11, 14, 15, 20, 21, 26, 27, 32, 42, 43, 44, 45, 51, 56, 68, 75, 84, 85, 86, 87, 92, 99, 104, 105, 111, 115, 116, 125, 128, 135, 144, 155, 170, 171, 176, 182, 183, 195, 204, 213, 219, 224, 260, 264, 267, 275, 304, 305, 324, 329, 341, 344
Offset: 1

Views

Author

Amiram Eldar, Jul 21 2023

Keywords

Comments

The positive Jacobsthal numbers, A001045(n) for n >= 1, are terms since their representation in Jacobsthal greedy base is one 1 followed by n-1 0's, so A265745(A001045(n)) = 1 divides A001045(n), and the representation of A001045(n) + 1 is 2 if n <= 2 and otherwise n-3 0's between two 1's, so A265745(A001045(n) + 1) = 2 which divides A001045(n) + 1.

Crossrefs

Programs

  • Mathematica
    consecGreedyJN[kmax_, len_] := Module[{m = 1, c = Table[False, {len}], s = {}}, Do[c = Join[Rest[c], {greedyJacobNivenQ[k]}]; If[And @@ c, AppendTo[s, k - len + 1]], {k, 1, kmax}]; s]; consecGreedyJN[350, 2] (* using the function greedyJacobNivenQ[n] from A364379 *)
  • PARI
    lista(kmax, len) = {my(c = vector(len)); for(k = 1, kmax, c = concat(vecextract(c, "^1"), isA364379(k)); if(vecsum(c) == len, print1(k-len+1, ", ")));} \\ using the function isA364379(n) from A364379
    lista(350, 2)

A364007 Numbers k such that k and k+1 are both Wythoff-Niven numbers (A364006).

Original entry on oeis.org

3, 6, 7, 20, 39, 51, 54, 55, 90, 135, 143, 294, 305, 321, 356, 365, 369, 374, 375, 376, 784, 800, 924, 978, 979, 980, 986, 1904, 1945, 1970, 2043, 2199, 2232, 2289, 2394, 2424, 2439, 2499, 2525, 2562, 2580, 2583, 4185, 4598, 4707, 4774, 4790, 4796, 4879, 5004
Offset: 1

Views

Author

Amiram Eldar, Jul 01 2023

Keywords

Comments

A035508(n) = Fibonacci(2*n+2) - 1 is a term for n >= 2 since A135818(Fibonacci(2*n+2) - 1) = A135818(Fibonacci(2*n+2)) = 1.

Crossrefs

Programs

  • Mathematica
    seq[count_, nConsec_] := Module[{cn = wnQ /@ Range[nConsec], s = {}, c = 0, k = nConsec + 1}, While[c < count, If[And @@ cn, c++; AppendTo[s, k - nConsec]]; cn = Join[Rest[cn], {wnQ[k]}]; k++]; s]; seq[50, 2] (* using the function wnQ[n] from A364006 *)

A364124 Numbers k such that k and k+1 are both Stolarsky-Niven numbers (A364123).

Original entry on oeis.org

8, 56, 84, 159, 195, 224, 384, 399, 405, 995, 1140, 1224, 1245, 1295, 1309, 1419, 1420, 1455, 1474, 1507, 2585, 2597, 2600, 2680, 2681, 2727, 2744, 2750, 2799, 2855, 3122, 3311, 3339, 3345, 3618, 3707, 3795, 4004, 6770, 6774, 6984, 6985, 7014, 7074, 7154, 7405
Offset: 1

Views

Author

Amiram Eldar, Jul 07 2023

Keywords

Crossrefs

Programs

  • Mathematica
    seq[count_, nConsec_] := Module[{cn = stolNivQ /@ Range[nConsec], s = {}, c = 0, k = nConsec + 1}, While[c < count, If[And @@ cn, c++; AppendTo[s, k - nConsec]]; cn = Join[Rest[cn], {stolNivQ[k]}]; k++]; s]; seq[50, 2] (* using the function stolNivQ[n] from A364123 *)
  • PARI
    lista(count, nConsec) = {my(cn = vector(nConsec, i, isStolNivQ(i)), c = 0, k = nConsec + 1); while(c < count, if(vecsum(cn) == nConsec, c++; print1(k-nConsec, ", ")); cn = concat(vecextract(cn, "^1"), isStolNivQ(k)); k++);} \\ using the function isA364123(n) from A364123
    lista(50, 2)
Showing 1-10 of 10 results.