cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A352108 Numbers k such that k and k+1 are both lazy-tribonacci-Niven numbers (A352107).

Original entry on oeis.org

1, 20, 39, 75, 115, 135, 155, 175, 176, 184, 204, 215, 264, 567, 684, 704, 725, 791, 846, 872, 1089, 1104, 1115, 1134, 1183, 1184, 1211, 1224, 1407, 1575, 1840, 1880, 2064, 2075, 2151, 2191, 2232, 2259, 2260, 2415, 2529, 2583, 2624, 2780, 2820, 2848, 2888, 2988
Offset: 1

Views

Author

Amiram Eldar, Mar 05 2022

Keywords

Examples

			20 is a term since 20 and 21 are both lazy-tribonacci-Niven numbers: the maximal tribonacci representation of 20, A352103(20) = 10111, has 4 1's and 20 is divisible by 4, and the maximal tribonacci representation of 21, A352103(20) = 11001, has 3 1's and 21 is divisible by 3.
		

Crossrefs

Subsequence of A352107.
Subsequences: A352109, A352110.

Programs

  • Mathematica
    t[1] = 1; t[2] = 2; t[3] = 4; t[n_] := t[n] = t[n - 1] + t[n - 2] + t[n - 3]; trib[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[t[k] <= m, k++]; k--; AppendTo[s, k]; m -= t[k]; k = 1]; IntegerDigits[Total[2^(s - 1)], 2]]; q[n_] := Module[{v = trib[n]}, nv = Length[v]; i = 1; While[i <= nv - 3, If[v[[i ;; i + 3]] == {1, 0, 0, 0}, v[[i ;; i + 3]] = {0, 1, 1, 1}; If[i > 3, i -= 4]]; i++]; i = Position[v, _?(# > 0 &)]; If[i == {}, False, Divisible[n, Total[v[[i[[1, 1]] ;; -1]]]]]]; Select[Range[3000], q[#] && q[# + 1] &]

A352109 Starts of runs of 3 consecutive lazy-tribonacci-Niven numbers (A352107).

Original entry on oeis.org

175, 1183, 2259, 5290, 12969, 21130, 51820, 70629, 78090, 79540, 81818, 129648, 160224, 169234, 180908, 228240, 238574, 249494, 278628, 332891, 376335, 383866, 398650, 399644, 454090, 550380, 565200, 683448, 683604, 694274, 728895, 754390, 782110, 809830, 837550
Offset: 1

Views

Author

Amiram Eldar, Mar 05 2022

Keywords

Examples

			175 is a term since 175, 176 and 177 are all divisible by the number of terms in their maximal tribonacci representation:
    k  A352103(k)  A352104(k)  k/A352104(k)
  ---  ----------  ----------  ------------
  175    11111110           7            25
  176    11111111           8            22
  177   100100100           3            59
		

Crossrefs

Subsequence of A352107 and A352108.
A352110 is a subsequence.

Programs

  • Mathematica
    t[1] = 1; t[2] = 2; t[3] = 4; t[n_] := t[n] = t[n - 1] + t[n - 2] + t[n - 3]; trib[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[t[k] <= m, k++]; k--; AppendTo[s, k]; m -= t[k]; k = 1]; IntegerDigits[Total[2^(s - 1)], 2]]; lazyTriboNivenQ[n_] := Module[{v = trib[n]}, nv = Length[v]; i = 1; While[i <= nv - 3, If[v[[i ;; i + 3]] == {1, 0, 0, 0}, v[[i ;; i + 3]] = {0, 1, 1, 1}; If[i > 3, i -= 4]]; i++]; i = Position[v, ?(# > 0 &)]; If[i == {}, False, Divisible[n, Total[v[[i[[1, 1]] ;; -1]]]]]]; seq[count, nConsec_] := Module[{tri = lazyTriboNivenQ /@ Range[nConsec], s = {}, c = 0, k = nConsec + 1}, While[c < count, If[And @@ tri, c++; AppendTo[s, k - nConsec]]; tri = Join[Rest[tri], {lazyTriboNivenQ[k]}]; k++]; s]; seq[30, 3]

A352110 Starts of runs of 4 consecutive lazy-tribonacci-Niven numbers (A352107).

Original entry on oeis.org

1081455, 1976895, 2894175, 5886255, 6906912, 15604110, 16588752, 19291479, 20387232, 25919439, 32394942, 34801557, 35654175, 36813582, 36907899, 39117219, 41407392, 43520832, 46181055, 47954499, 52145952, 54524319, 54815397, 56733639, 57775102, 58942959, 59292177
Offset: 1

Views

Author

Amiram Eldar, Mar 05 2022

Keywords

Comments

Conjecture: There are no runs of 5 consecutive lazy-tribonacci-Niven numbers (checked up to 6*10^9).

Examples

			1081455 is a term since 1081455, 1081456, 1081457 and 1081458 are all divisible by the number of terms in their maximal tribonacci representation:
        k               A352103(k)   A352104(k)    k/A352104(k)
  -------  -----------------------   ----------    ------------
  1081455  10101011011110110011110           15           72097
  1081456  10101011011110110011111           16           67591
  1081457  10101011011110110100100           13           83189
  1081458  10101011011110110100101           14           77247
		

Crossrefs

Subsequence of A352107, A352108 and A352109.

A352320 Pell-Niven numbers: numbers that are divisible by the sum of the digits in their minimal (or greedy) representation in terms of the Pell numbers (A317204).

Original entry on oeis.org

1, 2, 4, 5, 6, 9, 10, 12, 14, 15, 18, 20, 24, 28, 29, 30, 33, 34, 36, 39, 40, 42, 44, 48, 50, 58, 60, 63, 64, 68, 70, 72, 82, 84, 87, 88, 90, 92, 96, 110, 111, 112, 115, 116, 120, 125, 126, 135, 140, 141, 144, 155, 164, 165, 168, 169, 170, 174, 180, 183, 184, 186
Offset: 1

Views

Author

Amiram Eldar, Mar 12 2022

Keywords

Comments

Numbers k such that A265744(k) | k.
All the positive Pell numbers (A000129) are terms.

Examples

			6 is a term since its minimal Pell representation, A317204(6) = 101, has A265744(6) = 2 1's and 6 is divisible by 2.
		

Crossrefs

Programs

  • Mathematica
    pell[1] = 1; pell[2] = 2; pell[n_] := pell[n] = 2*pell[n - 1] + pell[n - 2]; q[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[pell[k] <= m, k++]; k--; AppendTo[s, k]; m -= pell[k]; k = 1]; Divisible[n, Plus @@ IntegerDigits[ Total[3^(s - 1)], 3]]]; Select[Range[200], q]

A352342 Lazy-Pell-Niven numbers: numbers that are divisible by the sum of the digits in their maximal (or lazy) representation in terms of the Pell numbers (A352339).

Original entry on oeis.org

1, 2, 4, 9, 12, 15, 20, 24, 25, 28, 30, 35, 40, 48, 50, 54, 56, 60, 63, 64, 70, 72, 78, 84, 88, 91, 96, 102, 115, 120, 136, 144, 160, 162, 168, 180, 182, 184, 189, 207, 209, 210, 216, 217, 234, 246, 256, 261, 270, 304, 306, 308, 315, 320, 328, 333, 350, 352, 357
Offset: 1

Views

Author

Amiram Eldar, Mar 12 2022

Keywords

Comments

Numbers k such that A352340(k) | k.

Examples

			4 is a term since its maximal Pell representation, A352339(4) = 11, has the sum of digits A352340(4) = 1+1 = 2 and 4 is divisible by 2.
		

Crossrefs

Programs

  • Mathematica
    pell[1] = 1; pell[2] = 2; pell[n_] := pell[n] = 2*pell[n - 1] + pell[n - 2]; pellp[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[pell[k] <= m, k++]; k--; AppendTo[s, k]; m -= pell[k]; k = 1]; IntegerDigits[Total[3^(s - 1)], 3]]; q[n_] := Module[{v = pellp[n]}, nv = Length[v]; i = 1; While[i <= nv - 2, If[v[[i]] > 0 && v[[i + 1]] == 0 && v[[i + 2]] < 2, v[[i ;; i + 2]] += {-1, 2, 1}; If[i > 2, i -= 3]]; i++]; i = Position[v, _?(# > 0 &)]; Divisible[n, Plus @@ v[[i[[1, 1]] ;; -1]]]]; Select[Range[300], q]

A352508 Catalan-Niven numbers: numbers that are divisible by the sum of the digits in their representation in terms of the Catalan numbers (A014418).

Original entry on oeis.org

1, 2, 4, 5, 6, 9, 10, 12, 14, 16, 18, 21, 24, 28, 30, 32, 33, 40, 42, 44, 45, 48, 55, 56, 57, 60, 65, 72, 78, 80, 84, 88, 95, 100, 105, 112, 126, 128, 130, 132, 134, 135, 138, 140, 144, 145, 146, 147, 152, 155, 156, 168, 170, 174, 180, 184, 185, 195, 210, 216
Offset: 1

Views

Author

Amiram Eldar, Mar 19 2022

Keywords

Comments

Numbers k such that A014420(k) | k.
All the Catalan numbers (A000108) are terms.
If k is an odd Catalan number (A038003), then k+1 is a term.

Examples

			4 is a term since its Catalan representation, A014418(4) = 20, has the sum of digits A014420(4) = 2 + 0 = 2 and 4 is divisible by 2.
9 is a term since its Catalan representation, A014418(9) = 120, has the sum of digits A014420(9) = 1 + 2 + 0 = 3 and 9 is divisible by 3.
		

Crossrefs

Programs

  • Mathematica
    c[n_] := c[n] = CatalanNumber[n]; q[n_] := Module[{s = {}, m = n, i}, While[m > 0, i = 1; While[c[i] <= m, i++]; i--; m -= c[i]; AppendTo[s, i]]; Divisible[n, Plus @@ IntegerDigits[Total[4^(s - 1)], 4]]]; Select[Range[216], q]

A364216 Jacobsthal-Niven numbers: numbers that are divisible by the sum of the digits in their Jacobsthal representation (A280049).

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 9, 11, 12, 14, 15, 16, 20, 22, 24, 27, 28, 32, 33, 36, 40, 42, 43, 44, 45, 46, 48, 51, 52, 54, 56, 57, 60, 68, 72, 75, 76, 84, 86, 87, 88, 92, 93, 95, 96, 99, 100, 104, 105, 108, 112, 115, 117, 120, 125, 126, 128, 129, 132, 135, 136, 138, 140
Offset: 1

Views

Author

Amiram Eldar, Jul 14 2023

Keywords

Comments

Numbers k such that A364215(k) | k.
A007583 is a subsequence since A364215(A007583(n)) = 1 for n >= 0.

Crossrefs

Programs

  • Mathematica
    seq[kmax_] := Module[{m = 1, s = {}}, Do[If[Divisible[k, DigitCount[m, 2, 1]], AppendTo[s, k]]; While[m++; OddQ[IntegerExponent[m, 2]]], {k, 1, kmax}]; s]; seq[140]
  • PARI
    lista(kmax) = {my(m = 1); for(k = 1, kmax, if( !(k % sumdigits(m, 2)), print1(k,", ")); until(valuation(m, 2)%2 == 0, m++));}

A364379 Greedy Jacobsthal-Niven numbers: numbers that are divisible by the sum of the digits in their representation in Jacobsthal greedy base (A265747).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 14, 15, 16, 20, 21, 22, 24, 26, 27, 28, 32, 33, 36, 40, 42, 43, 44, 45, 46, 48, 51, 52, 54, 56, 57, 60, 64, 68, 69, 72, 75, 76, 80, 84, 85, 86, 87, 88, 90, 92, 93, 96, 99, 100, 104, 105, 106, 108, 111, 112, 115, 116, 117, 120
Offset: 1

Views

Author

Amiram Eldar, Jul 21 2023

Keywords

Comments

Numbers k such that A265745(k) | k.
The positive Jacobsthal numbers, A001045(n) for n >= 1, are terms since their representation in Jacobsthal greedy base is one 1 followed by n-1 0's, so A265745(A001045(n)) = 1 divides A001045(n).

Crossrefs

Programs

  • Mathematica
    greedyJacobNivenQ[n_] := Divisible[n, A265745[n]]; Select[Range[120], greedyJacobNivenQ] (* using A265745[n] *)
  • PARI
    isA364379(n) = !(n % A265745(n)); \\ using A265745(n)

A364006 Wythoff-Niven numbers: numbers that are divisible by the number of 1's in their Wythoff representation.

Original entry on oeis.org

1, 3, 4, 6, 7, 8, 10, 12, 15, 18, 20, 21, 24, 26, 28, 32, 35, 39, 40, 42, 45, 47, 51, 52, 54, 55, 56, 60, 68, 72, 76, 80, 84, 86, 88, 90, 91, 98, 100, 102, 105, 117, 120, 123, 125, 135, 136, 138, 141, 143, 144, 156, 164, 168, 172, 174, 176, 178, 180, 188, 192
Offset: 1

Views

Author

Amiram Eldar, Jul 01 2023

Keywords

Comments

Numbers k such that A135818(k) | k.
Includes all the positive even-indexed Fibonacci numbers (A001906), since the Wythoff representation of Fibonacci(2*n), for n >= 1, is 1 followed by n-1 0's.

Crossrefs

Programs

  • Mathematica
    wnQ[n_] := (s = Total[w[n]]) > 0 && Divisible[n, s] (* using the function w[n] from A364005 *)

A364123 Stolarsky-Niven numbers: numbers that are divisible by the number of 1's in their Stolarsky representation (A364121).

Original entry on oeis.org

2, 4, 6, 8, 9, 12, 14, 16, 20, 22, 24, 27, 30, 36, 38, 40, 42, 44, 48, 54, 56, 57, 60, 65, 69, 72, 75, 80, 84, 85, 90, 92, 96, 98, 100, 102, 104, 108, 112, 116, 120, 124, 126, 132, 136, 138, 145, 147, 150, 153, 155, 159, 160, 175, 180, 185, 190, 195, 196, 205
Offset: 1

Views

Author

Amiram Eldar, Jul 07 2023

Keywords

Comments

Numbers k such that A200649(k) | k.
Fibonacci(k) + 1 is a term if k !== 3 (mod 6) (i.e., k is in A047263).

Examples

			4 is a term since its Stolarsky representation, A364121(4) = 10, has one 1 and 4 is divisible by 1.
6 is a term since its Stolarsky representation, A364121(6) = 101, has 2 1's and 6 is divisible by 2.
		

Crossrefs

Programs

  • Mathematica
    stol[n_] := stol[n] = If[n == 1, {}, If[n != Round[Round[n/GoldenRatio]*GoldenRatio], Join[stol[Floor[n/GoldenRatio^2] + 1], {0}], Join[stol[Round[n/GoldenRatio]], {1}]]];
    stolNivQ[n_] := n > 1 && Divisible[n, Total[stol[n]]];
    Select[Range[200], stolNivQ]
  • PARI
    stol(n) = {my(phi=quadgen(5)); if(n==1, [], if(n != round(round(n/phi)*phi), concat(stol(floor(n/phi^2) + 1), [0]), concat(stol(round(n/phi)), [1])));}
    isA364123(n) = n > 1 && !(n % vecsum(stol(n)));
Showing 1-10 of 10 results.