A351732 Number of length n word structures using an infinite alphabet with all distinct run-lengths and the first run length of a symbol less than that of previous symbols.
1, 1, 1, 2, 2, 3, 7, 8, 12, 17, 46, 51, 84, 114, 172, 437, 520, 810, 1153, 1699, 2298, 6075, 6955, 11219, 15561, 23308, 31133, 45544, 107379, 128475, 200201, 281480, 413389, 561028, 806643, 1071165, 2514418, 2952086, 4619012, 6364285, 9436458
Offset: 0
Keywords
Examples
The a(3) = 2 word structures are 111, 112. The a(4) = 2 word structures are 1111, 1112. The a(5) = 3 word structures are 11111, 11112, 11122. The a(6) = 7 word structures are 111111, 111112, 111122, 111221, 111211, 112111, 111223.
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..500
Programs
-
PARI
P(n) = {Vec(-1 + prod(k=1, n, 1 + y*x^k + O(x*x^n)))} R(u, k) = {k*[subst(serlaplace(p)/y, y, k-1) | p<-u]} seq(n)={my(u=P(n)); concat([1], sum(k=1, n, R(u, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)/(r!)^2) ))}
Comments