cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351741 Numbers k such that the concatenation of 1,2,...,k and the concatenation of k,k-1,...,1 have the same number of prime factors, counted with multiplicity.

Original entry on oeis.org

1, 3, 4, 5, 7, 10, 13, 16, 23, 26, 31, 32, 37, 39, 51, 54, 56
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Feb 17 2022

Keywords

Comments

Numbers k such that A001222(A007908(k)) = A001222(A000422(k)).

Examples

			a(3) = 4 is a term because 1234 = 2*617 and 4321 = 29*149 each have two prime factors.
		

Crossrefs

Programs

  • Maple
    dcat:= (a,b) -> a*10(1+ilog10(b))+b:
    a:= 1: b:= 1: R:= 1:
    for n from 2 to 40 do
    a:= dcat(n,a);
    b:= dcat(b,n);
    if numtheory:-bigomega(a) = numtheory:-bigomega(b) then R:= R,n fi
    od:
    R;
  • Mathematica
    Select[Range[32], SameQ @@ PrimeOmega@{FromDigits@ Flatten@ #, FromDigits@ Flatten@ Reverse[#]} &@ IntegerDigits@ Range[#] &] (* Michael De Vlieger, Feb 17 2022 *)
  • Python
    from sympy import primeomega
    def afind(limit, startk=1):
        k = startk
        sk = "".join(str(i) for i in range(1, k))
        skr = "".join(str(i) for i in range(k-1, 0, -1))
        for k in range(startk, limit+1):
            sk += str(k)
            skr = str(k) + skr
            if primeomega(int(sk)) == primeomega(int(skr)):
                print(k, end=", ")
    afind(23) # Michael S. Branicky, Feb 17 2022

Extensions

a(17) from Michael S. Branicky, Feb 19 2022