cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A352905 Expansion of e.g.f. sin(x) * exp(exp(x) - 1).

Original entry on oeis.org

0, 1, 2, 5, 16, 56, 218, 937, 4376, 22027, 118744, 681570, 4144988, 26598313, 179451366, 1268930969, 9378332608, 72267300476, 579336907254, 4822070246225, 41597773001612, 371306237988959, 3424303740576440, 32583334570211654, 319487530199710232, 3224337031346853361
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 07 2022

Keywords

Comments

The first negative term is a(71).

Crossrefs

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[Sin[x] Exp[Exp[x] - 1], {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[(-1)^k Binomial[n, 2 k + 1] BellB[n - 2 k - 1], {k, 0, Floor[(n - 1)/2]}], {n, 0, 25}]

Formula

a(n) = Sum_{k=0..floor((n-1)/2)} (-1)^k * binomial(n,2*k+1) * Bell(n-2*k-1).
Conjecture: a(n) = (i/(2*e))*Sum_{k=0..oo} ((k - i)^n - (k + i)^n)/(k!), where i = sqrt(-1) and e = exp(1). - Velin Yanev, Jul 06 2024
Showing 1-1 of 1 results.