cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351785 Symmetric array T(n, k), n, k >= 0, read by antidiagonals; for any m >= 0 with binary expansion Sum_{i >= 0} b_i*2^i, let d(m) = Sum_{i >= 0} b_i * 2^A130472(i); let t be the inverse of d; T(n, k) = t(d(n) + d(k)).

Original entry on oeis.org

0, 1, 1, 2, 4, 2, 3, 3, 3, 3, 4, 6, 1, 6, 4, 5, 5, 4, 4, 5, 5, 6, 16, 6, 5, 6, 16, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 18, 5, 18, 16, 18, 5, 18, 8, 9, 9, 16, 16, 17, 17, 16, 16, 9, 9, 10, 12, 10, 17, 18, 20, 18, 17, 10, 12, 10, 11, 11, 11, 11, 19, 19, 19, 19, 11, 11, 11, 11
Offset: 0

Views

Author

Rémy Sigrist, Feb 19 2022

Keywords

Comments

The function d is a bijection from the nonnegative integers to the nonnegative dyadic rationals satisfying d(A000695(n)) = n for any n >= 0.

Examples

			Array T(n, k) begins:
  n\k|   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
  ----  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --
    0|   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
    1|   1   4   3   6   5  16   7  18   9  12  11  14  13  24  15  26
    2|   2   3   1   4   6   7   5  16  10  11   9  12  14  15  13  24
    3|   3   6   4   5   7  18  16  17  11  14  12  13  15  26  24  25
    4|   4   5   6   7  16  17  18  19  12  13  14  15  24  25  26  27
    5|   5  16   7  18  17  20  19  22  13  24  15  26  25  28  27  30
    6|   6   7   5  16  18  19  17  20  14  15  13  24  26  27  25  28
    7|   7  18  16  17  19  22  20  21  15  26  24  25  27  30  28  29
    8|   8   9  10  11  12  13  14  15   2   3   1   4   6   7   5  16
    9|   9  12  11  14  13  24  15  26   3   6   4   5   7  18  16  17
   10|  10  11   9  12  14  15  13  24   1   4   3   6   5  16   7  18
		

Crossrefs

Cf. A000695, A130472, A351705, A351706, A351786 (multiplication).

Programs

  • PARI
    d(n) = { my (v=0, k); while (n, n-=2^k=valuation(n, 2); v+=2^((-1)^k*(k+1)\2)); v }
    t(n) = { my (v=0, k); while (n, n-=2^k=valuation(n, 2); v+=2^if (k>=0, 2*k, -1-2*k)); v }
    T(n,k) = t(d(n)+d(k))

Formula

T(A000695(n), A000695(k)) = A000695(n + k).
T(n, k) = T(k, n).
T(m, T(n, k)) = T(T(m, n), k).
T(n, 0) = n.