A351785 Symmetric array T(n, k), n, k >= 0, read by antidiagonals; for any m >= 0 with binary expansion Sum_{i >= 0} b_i*2^i, let d(m) = Sum_{i >= 0} b_i * 2^A130472(i); let t be the inverse of d; T(n, k) = t(d(n) + d(k)).
0, 1, 1, 2, 4, 2, 3, 3, 3, 3, 4, 6, 1, 6, 4, 5, 5, 4, 4, 5, 5, 6, 16, 6, 5, 6, 16, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 18, 5, 18, 16, 18, 5, 18, 8, 9, 9, 16, 16, 17, 17, 16, 16, 9, 9, 10, 12, 10, 17, 18, 20, 18, 17, 10, 12, 10, 11, 11, 11, 11, 19, 19, 19, 19, 11, 11, 11, 11
Offset: 0
Examples
Array T(n, k) begins: n\k| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ---- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 0| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1| 1 4 3 6 5 16 7 18 9 12 11 14 13 24 15 26 2| 2 3 1 4 6 7 5 16 10 11 9 12 14 15 13 24 3| 3 6 4 5 7 18 16 17 11 14 12 13 15 26 24 25 4| 4 5 6 7 16 17 18 19 12 13 14 15 24 25 26 27 5| 5 16 7 18 17 20 19 22 13 24 15 26 25 28 27 30 6| 6 7 5 16 18 19 17 20 14 15 13 24 26 27 25 28 7| 7 18 16 17 19 22 20 21 15 26 24 25 27 30 28 29 8| 8 9 10 11 12 13 14 15 2 3 1 4 6 7 5 16 9| 9 12 11 14 13 24 15 26 3 6 4 5 7 18 16 17 10| 10 11 9 12 14 15 13 24 1 4 3 6 5 16 7 18
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..10010
- Rémy Sigrist, Colored representation of the table for n, k < 2^10 (where the hue is function of T(n, k))
- Wikipedia, Dyadic rational
- Index entries for sequences related to binary expansion of n
Programs
-
PARI
d(n) = { my (v=0, k); while (n, n-=2^k=valuation(n, 2); v+=2^((-1)^k*(k+1)\2)); v } t(n) = { my (v=0, k); while (n, n-=2^k=valuation(n, 2); v+=2^if (k>=0, 2*k, -1-2*k)); v } T(n,k) = t(d(n)+d(k))
Comments