A351786 Symmetric array T(n, k), n, k >= 0, read by antidiagonals; for any m >= 0 with binary expansion Sum_{i >= 0} b_i*2^i, let d(m) = Sum_{i >= 0} b_i * 2^A130472(i); let t be the inverse of d; T(n, k) = t(d(n) * d(k)).
0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 3, 8, 3, 0, 0, 4, 10, 10, 4, 0, 0, 5, 1, 12, 1, 5, 0, 0, 6, 3, 5, 5, 3, 6, 0, 0, 7, 9, 18, 16, 18, 9, 7, 0, 0, 8, 11, 15, 20, 20, 15, 11, 8, 0, 0, 9, 32, 25, 17, 65, 17, 25, 32, 9, 0, 0, 10, 34, 40, 21, 23, 23, 21, 40, 34, 10, 0
Offset: 0
Examples
Array T(n, k) begins: n\k| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ---+------------------------------------------------------------------------- 0| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 2| 0 2 8 10 1 3 9 11 32 34 40 42 33 35 41 43 3| 0 3 10 12 5 18 15 25 40 43 33 38 45 58 48 51 4| 0 4 1 5 16 20 17 21 2 6 3 7 18 22 19 23 5| 0 5 3 18 20 65 23 70 10 15 12 25 30 75 72 77 6| 0 6 9 15 17 23 28 74 34 37 43 56 51 96 62 105 7| 0 7 11 25 21 70 74 88 42 56 38 52 63 109 99 113 8| 0 8 32 40 2 10 34 42 128 136 160 168 130 138 162 170 9| 0 9 34 43 6 15 37 56 136 131 170 164 142 144 173 178 10| 0 10 40 33 3 12 43 38 160 170 130 137 163 172 132 142
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..10010
- Rémy Sigrist, Colored representation of the table for n, k < 2^10 (where the hue is function of T(n, k))
- Wikipedia, Dyadic rational
- Index entries for sequences related to binary expansion of n
Programs
-
PARI
d(n) = { my (v=0, k); while (n, n-=2^k=valuation(n, 2); v+=2^((-1)^k*(k+1)\2)); v } t(n) = { my (v=0, k); while (n, n-=2^k=valuation(n, 2); v+=2^if (k>=0, 2*k, -1-2*k)); v } T(n,k) = t(d(n)*d(k))
Comments