cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A351808 a(n) is the quotient obtained when pod(m) divides pod(m^2), with pod = product of digits = A007954 and m = A351807(n).

Original entry on oeis.org

1, 2, 3, 2, 3, 3, 2, 8, 18, 4, 10, 3, 2, 8, 32, 15, 6, 21, 9, 14, 18, 0, 0, 6, 12, 21, 24, 0, 0, 0, 0, 0, 0, 0, 0, 7, 32, 81, 0, 10, 4, 0, 30, 35, 0, 21, 144, 0, 64, 32, 0, 2, 0, 0, 0, 12, 80, 252, 243, 12, 60, 27, 48, 256, 15, 30, 140, 36, 8, 14, 336, 96, 144
Offset: 1

Views

Author

Bernard Schott, Feb 20 2022

Keywords

Comments

a(n) = 0 iff m = A351807(n) is a term of A134844.
As pod(m) is 7-smooth number and pod(m^2) can be 0 (see example), all terms of the sequence are in {0} union A002473. The smallest term k such that the corresponding quotient = 0 or A002473(n) is A351809(n).

Examples

			A351807(9) = 13, then pod(13) = 1*3 = 3 while pod(13^2) = pod(169) = 1*6*9 = 54; hence, a(9) = 54/3 = 18.
A351807(23) = 33, then pod(33) = 3*3 = 9 while pod(33^2) = pod(1089) = 1*0*8*9 = 0; hence, a(23) = 0.
		

Crossrefs

Programs

  • Mathematica
    pod[n_] := Times @@ IntegerDigits[n]; r[n_] := If[(p = pod[n]) > 0, pod[n^2]/p, 1/2]; Select[r /@ Range[200], IntegerQ] (* Amiram Eldar, Feb 21 2022 *)
  • PARI
    lista(nn) = {my(list=List()); for (m=1, nn, my(d=digits(m), q); if (vecmin(d) && denominator(q = vecprod(digits(m^2))/vecprod(d)) == 1, listput(list, q);); ); Vec(list);} \\ Michel Marcus, Feb 21 2022
    
  • Python
    from math import prod
    from itertools import count, islice
    def A351808_gen(): # generator of terms
        return (q for q, r in (divmod(prod(int(d) for d in str(m**2)),prod(int(d) for d in str(m))) for m in count(1) if '0' not in str(m)) if r == 0)
    A351808_list = list(islice(A351808_gen(),20)) # Chai Wah Wu, Feb 25 2022

Extensions

More terms from Amiram Eldar, Feb 21 2022

A351809 a(0) = 32; then, for n >= 1, a(n) is the smallest positive integer k such that pod(k^2)/pod(k) = A002473(n) where pod = product of digits = A007954.

Original entry on oeis.org

32, 1, 2, 3, 15, 381, 25, 61, 12, 27, 16, 41, 28, 23, 336, 13, 1766, 26, 43, 2675, 118, 278, 74, 22, 76, 128, 392, 343, 228, 121, 418, 976, 258, 193, 116, 194, 93, 218, 441, 1231, 112, 63, 219, 984, 136, 4165, 2271, 1894, 183, 615, 434, 22831, 523, 1592, 2435
Offset: 0

Views

Author

Bernard Schott, Feb 24 2022

Keywords

Comments

As pod(m) is a 7-smooth number and pod(m^2) can be 0, all terms of A351808 are in {0} union A002473. See example section for why a(0) = 32.

Examples

			pod(32) = 3*2 = 6, pod(32^2) = pod(1024) = 1*0*2*4 = 0, and k = 32 is the smallest positive integer k such that pod(k^2) = 0 while pod(k) <> 0, so a(0) = 32.
A002473(5) = 5; pod(381) = 3*8*1 = 24, pod(381^2) = pod(145161) = 1*4*5*1*6*1 = 120; as 120/24 = 5, and 381 is the smallest positive integer k such that pod(k^2)/pod(k) = 5 then a(5) = 381.
A002473(11) = 12; pod(41)= 4*1 = 4, pod(41^2) = pod(1681) = 1*6*8*1 = 48; as 48/4 = 12 and 41 is the smallest positive integer k such that pod(k^2)/pod(k) = 12, then a(11) = 41.
		

Crossrefs

Programs

  • Mathematica
    sevenSmooths = Select[Range[150], Max[FactorInteger[#][[;; , 1]]] <= 7 &]; pod[n_] := Times @@ IntegerDigits[n]; r[n_] := If[(p = pod[n]) > 0, pod[n^2]/p, -1]; s = Array[r, 3*10^4]; TakeWhile[FirstPosition[s, #] & /@ Join[{0}, sevenSmooths] // Flatten, NumberQ] (* Amiram Eldar, Feb 24 2022 *)
  • PARI
    pod(k) = vecprod(digits(k)); \\ A007954
    smp(m) = my(k=1); while (!pod(k) || (pod(k^2)/pod(k) != m), k++); k;
    isss(n) = (n<11) || (vecmax(factor(n, 7)[, 1])<8); \\ A002473
    lista(nn) = apply(smp, select(isss, [0..nn]));
    lista(200) \\ Michel Marcus, Feb 24 2022

Extensions

More terms from Amiram Eldar, Feb 24 2022
Showing 1-2 of 2 results.