A351822 a(n) is the number of different score sequences that are possible for strong tournaments on n vertices.
1, 1, 0, 1, 1, 3, 7, 21, 61, 184, 573, 1835, 5969, 19715, 66054, 223971, 767174, 2651771, 9240766, 32436016, 114596715, 407263306, 1455145050, 5224710466, 18843677124, 68243466611, 248090964092, 905092211818, 3312816854525, 12162610429661, 44780896121875, 165316324574671, 611819769698967
Offset: 0
Keywords
Examples
The seven strong score sequences of length six are (1,1,2,3,4,4), (1,1,3,3,3,4), (1,2,2,2,4,4), (1,2,2,3,3,4), (1,2,3,3,3,3), (2,2,2,2,3,4), (2,2,2,3,3,3).
Links
- Paul K. Stockmeyer, Table of n, a(n) for n = 0..500
- Paul K. Stockmeyer, Counting Various Classes of Tournament Score Sequences, arXiv:2202.05238 [math.CO], 2022.
- Paul K. Stockmeyer, Counting Various Classes of Tournament Score Sequences, J. Integer Seq. 26 (2023), Article 23.5.2.
Crossrefs
Cf. A000571.
Formula
For n >= 2, a(n) = Sum_{E=floor(n/2)..n-1} g_n(binomial(n, 2), E), where g_1(T, E) = [T=E]; g_n(T, E)=0 if T-E <= binomial(n-1, 2) and g_n(T, E) = Sum_{k=0..E} g_{n-1}(T-E, k) otherwise.
a(n) ~ c * 4^n / n^(5/2), where c = 0.202756471582408229... - Vaclav Kotesovec, Feb 21 2022
Comments