cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Paul K. Stockmeyer

Paul K. Stockmeyer's wiki page.

Paul K. Stockmeyer has authored 7 sequences.

A353581 a(n) = 2*a(n-1) + 2*a(n-3) + a(n-4), with a(0) = 0 = a(1), a(2) = 2, and a(3) = 1.

Original entry on oeis.org

0, 0, 2, 1, 2, 8, 20, 45, 108, 264, 638, 1537, 3710, 8960, 21632, 52221, 126072, 304368, 734810, 1773985, 4282778, 10339544, 24961868, 60263277, 145488420, 351240120, 847968662, 2047177441, 4942323542, 11931824528, 28805972600, 69543769725, 167893512048, 405330793824
Offset: 0

Author

Paul K. Stockmeyer, May 04 2022

Keywords

Formula

a(n) = (1/8) ((5-3*s)*(1+s)^n + (5+3*s)*(1-s)^n + 2*sin(n*Pi/2) - 10*cos(n*Pi/2)) where s = sqrt(2).
G.f.: x^2*(2 - 3*x)/((1 + x^2)*(1 - 2*x - x^2)). - Stefano Spezia, May 04 2022

A353582 a(n) = 2*a(n-1) + 2*a(n-3) + a(n-4) - 1, with a(0) = 0 = a(1), a(2) = 2, and a(3) = 3.

Original entry on oeis.org

0, 0, 2, 3, 5, 13, 33, 78, 186, 450, 1088, 2625, 6335, 15295, 36927, 89148, 215220, 519588, 1254398, 3028383, 7311161, 17650705, 42612573, 102875850, 248364270, 599604390, 1447573052, 3494750493, 8437074035, 20368898563, 49174871163, 118718640888, 286612152936, 691942946760
Offset: 0

Author

Paul K. Stockmeyer, May 04 2022

Keywords

Formula

a(n) = (1/16)((4-s)*(1+s)^n + (4+s)*(1-s)^n - 8*sin(n*Pi/2) - 12*cos(n*Pi/2) + 4) where s = sqrt(2).
G.f.: x^2*(2 - 3*x)/((1 - x)*(1 + x^2)*(1 - 2*x - x^2)). - Stefano Spezia, May 04 2022

A353580 a(n) = 2*a(n-1) + a(n-2) - 1, with a(0) = 0 and a(1) = 2.

Original entry on oeis.org

0, 2, 3, 7, 16, 38, 91, 219, 528, 1274, 3075, 7423, 17920, 43262, 104443, 252147, 608736, 1469618, 3547971, 8565559, 20679088, 49923734, 120526555, 290976843, 702480240, 1695937322, 4094354883, 9884647087, 23863649056, 57611945198, 139087539451, 335787024099, 810661587648
Offset: 0

Author

Paul K. Stockmeyer, May 03 2022

Keywords

Programs

  • Mathematica
    nxt[{a_,b_}]:={b,2b+a-1}; NestList[nxt,{0,2},40][[;;,1]] (* or *) LinearRecurrence[{3,-1,-1},{0,2,3},40] (* Harvey P. Dale, Mar 14 2025 *)

Formula

a(n) = (1/4)((2*s - 1)*(1 + s)^n - (2*s + 1)*(1 - s)^n + 2) where s = sqrt(2).
G.f.: -x*(3*x-2)/((x-1)*(x^2+2*x-1)). - Alois P. Heinz, May 03 2022
E.g.f.: exp(x)*(1 - cosh(sqrt(2)*x) + 2*sqrt(2)*sinh(sqrt(2)*x))/2. - Stefano Spezia, May 03 2022

A353579 Numbers in the smallest subset of N containing 1 and closed under the mappings k->2^n + k, k->3*2^{n+1} + k, and k->3*2^{n+2} + k where n = ceiling(log_2(k)).

Original entry on oeis.org

1, 2, 4, 7, 8, 13, 14, 15, 16, 26, 28, 29, 30, 31, 32, 52, 55, 56, 58, 60, 61, 62, 63, 64, 103, 104, 109, 110, 111, 112, 116, 119, 120, 122, 124, 125, 126, 127, 128, 205, 206, 207, 208, 218, 220, 221, 222, 223, 224, 231, 232, 237, 238, 239, 240, 244, 247, 248, 250, 252, 253, 254, 255, 256
Offset: 1

Author

Paul K. Stockmeyer, May 03 2022

Keywords

A353578 Numbers in the smallest subset of N containing 3 and closed under the mappings k->2k + 1, k->8k + 3, and k->16k + 3.

Original entry on oeis.org

3, 7, 15, 27, 31, 51, 55, 59, 63, 103, 111, 115, 119, 123, 127, 207, 219, 223, 231, 239, 243, 247, 251, 255, 411, 415, 435, 439, 443, 447, 463, 475, 479, 487, 495, 499, 503, 507, 511, 819, 823, 827, 831, 871, 879, 883, 887, 891, 895, 923, 927, 947, 951, 955, 959, 975, 987, 991, 999, 1007, 1011, 1015, 1019, 1023
Offset: 1

Author

Paul K. Stockmeyer, May 03 2022

Keywords

A351869 a(n) is the number of self-complementary score sequences that are possible for strong tournaments on n vertices.

Original entry on oeis.org

1, 1, 0, 1, 1, 3, 3, 9, 11, 30, 39, 103, 141, 363, 514, 1301, 1894, 4727, 7036, 17358, 26311, 64282, 98936, 239712, 373806, 899115, 1418130, 3389078, 5399133, 12828749, 20619565, 48739465, 78963217, 185769110, 303128971, 710067027, 1166206802, 2720959217, 4495461790
Offset: 0

Author

Paul K. Stockmeyer, Feb 22 2022

Keywords

Comments

See A000571 for the definition of a tournament and its score sequence. A tournament is strong if every two vertices are mutually reachable by directed paths. Alternatively, a tournament is strong if it contains a directed Hamiltonian cycle.
A sequence (s_1 <= s_2 <= ... <= s_n) of integers is the score sequence of a strong tournament iff Sum_{i=1..r} s_i > binomial(r,2) for 1 <= r < n and Sum_{i=1..n} s_i = binomial(n,2). It is self-complementary iff s_{n+1-i} = n-1-s_i for 1 <= i <= n/2.

Examples

			The 9 self-complementary strong score sequences of length seven are
  (1,1,2,3,4,5,5),
  (1,1,3,3,3,5,5),
  (1,2,2,3,4,4,5),
  (1,2,3,3,3,4,5),
  (1,3,3,3,3,3,5),
  (2,2,2,3,4,4,4),
  (2,2,3,3,3,4,4),
  (2,3,3,3,3,3,4),
  (3,3,3,3,3,3,3).
		

Crossrefs

Formula

For n >= 1, a(2*n) = Sum_{T=binomial(n,2)+1..n*(n-1)} Sum_{E=floor(n/2)..n-1} g_n(T,E) and a(2*n+1) = Sum_{T=binomial(n,2)+1..n^2} Sum_{E=floor(n/2)..n} g_n(T,E), where g_1(T, E)=[T=E], and for n>=2, g_n(T, E)=0 if T-E <= binomial(n-1, 2) and g_n(T, E) = Sum_{k=0..E} g_{n-1}(T-E, k) otherwise.

A351822 a(n) is the number of different score sequences that are possible for strong tournaments on n vertices.

Original entry on oeis.org

1, 1, 0, 1, 1, 3, 7, 21, 61, 184, 573, 1835, 5969, 19715, 66054, 223971, 767174, 2651771, 9240766, 32436016, 114596715, 407263306, 1455145050, 5224710466, 18843677124, 68243466611, 248090964092, 905092211818, 3312816854525, 12162610429661, 44780896121875, 165316324574671, 611819769698967
Offset: 0

Author

Paul K. Stockmeyer, Feb 20 2022

Keywords

Comments

See A000571 for the definition of a tournament and its score sequence. A tournament is strong if every two vertices are mutually reachable by directed paths. Alternatively, a tournament is strong if it contains a directed Hamiltonian cycle.
A sequence (s_1 <= s_2 <= ... <= s_n) of integers is the score sequence of a strong tournament iff Sum_{i=1..r} s_i > binomial(r,2) for 1 <= r < n and Sum_{i=1..n} s_i = binomial(n,2).

Examples

			The seven strong score sequences of length six are
  (1,1,2,3,4,4),
  (1,1,3,3,3,4),
  (1,2,2,2,4,4),
  (1,2,2,3,3,4),
  (1,2,3,3,3,3),
  (2,2,2,2,3,4),
  (2,2,2,3,3,3).
		

Crossrefs

Cf. A000571.

Formula

For n >= 2, a(n) = Sum_{E=floor(n/2)..n-1} g_n(binomial(n, 2), E), where g_1(T, E) = [T=E]; g_n(T, E)=0 if T-E <= binomial(n-1, 2) and g_n(T, E) = Sum_{k=0..E} g_{n-1}(T-E, k) otherwise.
a(n) ~ c * 4^n / n^(5/2), where c = 0.202756471582408229... - Vaclav Kotesovec, Feb 21 2022