A351856 Number of nonnegative integer solutions to 2*n = x_1 + x_2 + ... + x_n + 2*y_1 + 2*y_2 + ... + 2*y_n.
2, 14, 119, 1086, 10252, 98735, 963832, 9502014, 94386908, 943206264, 9471346755, 95491466655, 966026045376, 9800968460024, 99685873633744, 1016118049037630, 10377363759903252, 106161722891946356, 1087696666197827374, 11159365823946907336, 114631982782490824420
Offset: 1
Examples
n = 2: 14 distributions of 4 identical objects in 2 white and 2 black baskets White Black 1) (0) (0) [4] [0] 2) (0) (0) [0] [4] 3) (0) (0) [2] [2] 4) (2) (0) [2] [0] 5) (0) (2) [2] [0] 6) (1) (1) [2] [0] 7) (2) (0) [0] [2] 8) (0) (2) [0] [2] 9) (1) (1) [0] [2] 10) (4) (0) [0] [0] 11) (0) (4) [0] [0] 12) (3) (1) [0] [0] 13) (1) (3) [0] [0] 14) (2) (2) [0] [0]
References
- R. P. Stanley, Enumerative Combinatorics Volume 2, Cambridge Univ. Press, 1999, Theorem 6.33, p. 197.
Programs
-
Maple
seq( add(binomial(3*n-2*k-1,2*n-2*k)*binomial(n+k-1,k), k = 0..n), n = 1..20);
Formula
a(n) = [x^(2*n)] ( 1/((1 - x)*(1 - x^2)) )^n.
a(n) = Sum_{k = 0..n} C(3*n-2*k-1,2*n-2*k)*C(n+k-1,k).
a(n) = Sum_{k = 0..2*n} (-1)^k*C(4*n-k-1,2*n-k)*C(n+k-1,k).
32*n*(n-1)*(2*n-1)*(2*n-3)*(41*n^2-126*n+93)*a(n) = 2*(n-1)*(2*n-3)*(16851*n^4-68637*n^3+93680*n^2-49024*n+7680)*a(n-1) - 5*(5*n-9)*(5*n-8)*(5*n-7)*(5*n-6)*(41*n^2-44*n+8)*a(n-2) with a(1) = 2 and a(2) = 14.
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and positive integers n and k.
Conjecture: the supercongruences a(n*p^k) == a(n*p^(k-1)) (mod p^(3*k)) hold for all primes p >= 5 and positive integers n and k.
The o.g.f. A(x) = 2*x + 14*x^2 + 119*x^3 + ... is the diagonal of the bivariate rational function x*t*(x - 1)*((x - 1)^2 - t)/((x - 1)^3 - t*(2*x + t - 2)) and hence is an algebraic function over Q(x) by Stanley 1999, Theorem 6.33, p. 197.
Let F(x) = (1/x)*Series_Reversion( x*sqrt((1-x)*(1-x^2)) ) and put G(x) = x*(d/dx)(log(F(x))). Then A(x^2) = (G(x) + G(-x))/2.
Comments