A351869 a(n) is the number of self-complementary score sequences that are possible for strong tournaments on n vertices.
1, 1, 0, 1, 1, 3, 3, 9, 11, 30, 39, 103, 141, 363, 514, 1301, 1894, 4727, 7036, 17358, 26311, 64282, 98936, 239712, 373806, 899115, 1418130, 3389078, 5399133, 12828749, 20619565, 48739465, 78963217, 185769110, 303128971, 710067027, 1166206802, 2720959217, 4495461790
Offset: 0
Keywords
Examples
The 9 self-complementary strong score sequences of length seven are (1,1,2,3,4,5,5), (1,1,3,3,3,5,5), (1,2,2,3,4,4,5), (1,2,3,3,3,4,5), (1,3,3,3,3,3,5), (2,2,2,3,4,4,4), (2,2,3,3,3,4,4), (2,3,3,3,3,3,4), (3,3,3,3,3,3,3).
Links
- Paul K. Stockmeyer, Table of n, a(n) for n = 0..501
- Paul K. Stockmeyer, Counting Various Classes of Tournament Score Sequences, arXiv:2202.05238 [math.CO], 2022.
- Paul K. Stockmeyer, Counting Various Classes of Tournament Score Sequences, J. Integer Seq. 26 (2023), Article 23.5.2.
Formula
For n >= 1, a(2*n) = Sum_{T=binomial(n,2)+1..n*(n-1)} Sum_{E=floor(n/2)..n-1} g_n(T,E) and a(2*n+1) = Sum_{T=binomial(n,2)+1..n^2} Sum_{E=floor(n/2)..n} g_n(T,E), where g_1(T, E)=[T=E], and for n>=2, g_n(T, E)=0 if T-E <= binomial(n-1, 2) and g_n(T, E) = Sum_{k=0..E} g_{n-1}(T-E, k) otherwise.
Comments