cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A355914 a(n) = gcd(b(n-1),b(n)), where b(n) = A351871(n).

Original entry on oeis.org

1, 2, 1, 5, 2, 1, 1, 4, 1, 1, 2, 1, 1, 2, 1, 1, 4, 1, 1, 8, 2, 3, 3, 6, 1, 1, 6, 1, 1, 6, 10, 2, 1, 1, 2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 30, 5, 5, 8, 1, 1, 4, 43, 1, 2, 1, 3, 4, 1, 3, 12, 1, 1, 2, 1, 1, 2, 1, 1, 2, 3, 1, 2, 1, 1, 2, 25, 1, 4, 1, 1, 6, 1, 1, 6
Offset: 2

Views

Author

N. J. A. Sloane, Sep 19 2022

Keywords

Comments

In order to understand the difference between A351871 (which cycles) and A355898 (which appears to diverge), it would be helpful to understand the difference between the respective gcd sequences (this and A355899 - the latter has a very interesting graph!).

Crossrefs

Programs

  • Python
    from math import gcd
    from itertools import islice
    def agen():
        a = [1, 2]
        while True: g = gcd(*a); yield g; a = [a[-1], g + sum(a)//g]
    print(list(islice(agen(), 85))) # Michael S. Branicky, Sep 19 2022

Extensions

a(66) and beyond from Michael S. Branicky, Sep 19 2022

A355898 a(1) = a(2) = 1; a(n) = gcd(a(n-1), a(n-2)) + (a(n-1) + a(n-2))/gcd(a(n-1), a(n-2)).

Original entry on oeis.org

1, 1, 3, 5, 9, 15, 11, 27, 39, 25, 65, 23, 89, 113, 203, 317, 521, 839, 1361, 2201, 3563, 5765, 9329, 15095, 24425, 7909, 32335, 40245, 14521, 54767, 69289, 124057, 193347, 317405, 46443, 363849, 136767, 166875, 101217, 89367, 63531, 50969, 114501, 165471, 93327, 86269, 179597, 265867, 445465, 711333
Offset: 1

Views

Author

N. J. A. Sloane, Sep 01 2022

Keywords

Comments

Suggested by A351871.
Sequence appears to diverge, but it would be nice to have a proof.
From Giorgos Kalogeropoulos, Nov 01 2022 : (Start)
Conjecture: For n >= 3775 a(n) can also be expressed in the following three ways:
1) a(n) = 1 + a(n-1) + a(n-2).
2) a(n) = 2*a(n-1) - a(n-3).
3) If A = a(3774), B = a(3772) and F = Fibonacci A000045(n),
a(n) = (A+1)*F(n-3772) - (B+1)*F(n-3774) - 1.
These three formulas only work for n >= 3775. (End)

Crossrefs

Programs

  • Maple
    A351871 := proc(u,v,M) local n,r,s,g,t,a;
    a:=[u,v]; r:=u; s:=v;
    for n from 1 to M do g:=gcd(r,s); t:=g+(r+s)/g; a:=[op(a),t];
       r:=s; s:=t; od;
    a;
    end proc;
    A351871(1,1,100);
  • Mathematica
    Nest[Append[#1, #3 + Total[#2]/#3] & @@ {#1, #2, GCD @@ #2} & @@ {#, #[[-2 ;; -1]], GCD[#[[-2 ;; -1]]]} &, {1, 1}, 48] (* Michael De Vlieger, Sep 03 2022 *)
  • PARI
    {a355898(N=50,A1=1,A2=1)= my(a=vector(N));a[1]=A1;a[2]=A2;for(n=1,N,if(n>2,my(g=gcd(a[n-1],a[n-2]));a[n]=g+(a[n-1]+a[n-2])/g);print1(a[n],",")) } \\ Ruud H.G. van Tol, Sep 19 2022
  • Python
    from math import gcd
    from itertools import islice
    def A355898_gen(): # generator of terms
        yield from (a:=(1,1))
        while True: yield (a:=(a[1],(b:=gcd(*a))+sum(a)//b))[1]
    A355898_list = list(islice(A355898_gen(),30)) # Chai Wah Wu, Sep 01 2022
    

A355899 The successive gcd's arising in A355898.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 3, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 5, 1, 1, 1, 1, 1, 11, 1, 3, 3, 3, 3, 3, 3, 1, 1, 3, 3, 1, 1, 1, 1, 1, 7, 17, 3, 1, 1, 3, 3, 3, 5, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 71, 71, 5, 1, 1, 5, 1, 3, 1, 13, 3, 1, 5, 15, 1, 1, 5
Offset: 1

Views

Author

N. J. A. Sloane, Sep 03 2022

Keywords

Comments

A proof that this does not grow too rapidly would prove that A355898 diverges.

Crossrefs

Programs

  • Mathematica
    GCD @@@ Partition[Nest[Append[#1, #3 + Total[#2]/#3] & @@ {#1, #2, GCD @@ #2} & @@ {#, #[[-2 ;; -1]], GCD[#[[-2 ;; -1]]]} &, {1, 1}, 100], 2, 1] (* Michael De Vlieger, Sep 03 2022 *)

A355900 Indices of records in A355899.

Original entry on oeis.org

1, 5, 10, 33, 51, 84, 107, 849
Offset: 1

Views

Author

N. J. A. Sloane, Sep 03 2022

Keywords

Crossrefs

A355901 Records in A355899.

Original entry on oeis.org

1, 3, 5, 11, 17, 71, 579, 2705
Offset: 1

Views

Author

N. J. A. Sloane, Sep 03 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nn = 2^16; j = k = r = 1; {1}~Join~Reap[Do[m = # + (j + k)/# &@ GCD[j, k]; If[# > r, r = #; Sow[r]] &[GCD[k, m]]; j = k; k = m, {n, 3, nn}]][[-1, -1]] (* Michael De Vlieger, Sep 03 2022 *)
Showing 1-5 of 5 results.