A351890 Primes p such that tau(p - 1) - 1 = tau(p - 2) = tau(p - 3), where tau(k) is the number of divisors of k (A000005).
5, 17, 65537, 9632244737, 20892967937, 127831991297, 149255504897, 159667373057, 351108391937, 542497063937, 1650957730817, 2270398022657, 2322380932097, 2747956028417, 2888694547457, 3516735087617, 6029264167937, 6122338640897, 6705696695297, 11125266727937
Offset: 1
Keywords
Examples
Quadruple of [tau(65534), tau(65535), tau(65536), tau(65537)]: [16, 16, 17, 2].
Programs
-
Magma
[m: m in [4..10^6] | IsPrime(m) and #Divisors(m - 1) eq #Divisors(m - 2) + 1 and #Divisors(m - 2) eq #Divisors(m - 3)];
Comments