A351903 a(n) is the smallest number k such that the symmetric representation of sigma(k) has at least one part of size n.
1, 3, 2, 7, 9, 11, 4, 15, 10, 19, 21, 6, 25, 27, 8, 31, 33, 22, 37, 39, 26, 43, 45, 47, 49, 51, 34, 12, 57, 38, 16, 45, 65, 67, 69, 46, 73, 75, 18, 79, 81, 20, 85, 87, 58, 91, 93, 62, 52, 99, 101, 103, 105, 70, 109, 28, 74, 115, 117, 24, 121, 123, 32, 127, 129, 86, 133, 135, 137, 76
Offset: 1
Keywords
Examples
For n = 11 we have that 21 is the smallest number k with at least one part 11 in the symmetric representation of sigma(k), so a(11) = 21. The symmetric representation of sigma(21) in the first quadrant looks like this: . _ _ _ _ _ _ _ _ _ _ _ 11 |_ _ _ _ _ _ _ _ _ _ _| | | |_ _ _ |_ _ |_ 5 |_ _|_ | |_ 5 |_ | | | |_|_ _ _ _ 11 | | | | | | | | | | | | | | | | | | | | |_| . For n = 12 we have that 6 is the smallest number k with at least one part 12 in the symmetric representation of sigma(k), so a(12) = 6. The symmetric representation of sigma(6) in the first quadrant looks like this: . _ _ _ _ |_ _ _ |_ | |_ 12 |_ _ | | | | | |_| . Some pairs of the form a(x) = y; a(y) = x: a(2) = 3; a(3) = 2. a(4) = 7; a(7) = 4. a(8) = 15; a(15) = 8. a(16) = 31; a(31) = 16. . The first three repeated terms are 45 = a(23) = a(32), 135 = a(68) = a(104) and 225 = a(113) = a(177), - _Hartmut F. W. Hoft_, Jun 10 2024
Links
- Hartmut F. W. Hoft, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
(* a237270[ ] implements improved computing time for A237270 *) a237591[n_, k_] := Map[Ceiling[(n+1)/#-(#+1)/2]-Ceiling[(n+1)/(#+1)-(#+2)/2]&, Range[k]] a249223[n_, k_] := FoldList[#1+(-1)^(#2+1)KroneckerDelta[Mod[n-#2 (#2+1)/2, #2]]&, 1, Range[2, k]] row[n_] := Floor[(Sqrt[8*n+1]-1)/2] a237270[n_] := Module[{lw=Transpose[{a237591[n, row[n]], a249223[n, row[n]]}], diag, sL, pL}, diag=Last[lw][[2]]; sL=Split[lw, #[[2]]!=0&]; pL=Map[Apply[Dot, Transpose[#]]&, Select[sL, #[[1, 2]]!=0&]]; If[diag==0, Join[pL, Reverse[pL]], If[Length[pL]>1, Join[Most[pL], {2Last[pL]-diag}, Reverse[Most[pL]]], 2pL-diag]]] a351903[n_] := Module[{list=Table[0, n], count0=n, i=1}, While[count0>0, Map[If[list[[#]]==0, list[[#]]=i; count0--]&, Select[a237270[i], #<=n&]]; i++]; list] a351903[70] (* Hartmut F. W. Hoft, Jun 10 2024 *)
Formula
a(n) = min( k : exists 1 <= j <= |SRS(k)|, SRS(k)[j] = n ) where |SRS(k)| denotes the number of parts in SRS(k) and SRS(k)[j] its j-th part. - Hartmut F. W. Hoft, Jun 10 2024
Extensions
a(17)-a(70) from Hartmut F. W. Hoft, Jun 10 2024
Comments