A351910 Numbers k >= 1 such that A053818(k) divided by A000010(k) is an integer.
1, 2, 4, 6, 8, 10, 12, 16, 18, 20, 22, 24, 30, 32, 34, 36, 40, 42, 44, 46, 48, 50, 54, 58, 60, 64, 66, 68, 72, 78, 80, 82, 84, 88, 90, 92, 94, 96, 100, 102, 106, 108, 110, 114, 116, 118, 120, 126, 128, 132, 136, 138, 142, 144, 150, 156, 160, 162, 164, 166, 168, 170
Offset: 1
Keywords
Examples
k = 40: A053818(40) = 8560, A000010(40) = 16, 8560/16 = 535 thus 40 is a term.
Programs
-
Mathematica
f[p_, e_] := -p^(1 - e); q[1] = True; q[n_] := IntegerQ[n * Times @@ f @@@ FactorInteger[n]/6 + n^2/3]; Select[Range[160], q] (* Amiram Eldar, Feb 25 2022, based on Brown's formula at A053818 *)
-
PARI
isok(m) = denominator(sum(k=1, m, k^2*(gcd(m, k) == 1))/eulerphi(m)) == 1; \\ Michel Marcus, Feb 25 2022
Comments