A351920 E.g.f. A(x) satisfies: A(x/A(x)) = A(x) / (A(x) - x*A(x)').
1, 1, -2, 15, -200, 3920, -102924, 3424946, -139217280, 6733296720, -379945682400, 24634909864752, -1813131434947392, 149981854962931680, -13828816882622028000, 1411324560147609680400
Offset: 0
Keywords
Examples
E.g.f.: A(x) = 1 + x - 2*x^2/2! + 15*x^3/3! - 200*x^4/4! + 3920*x^5/5! - 102924*x^6/6! + 3424946*x^7/7! - 139217280*x^8/8! + ... where A(x/A(x)) = A(x) / (A(x) - x*A(x)'). Related table. Here we illustrate the related formula a(n) = [x^n/n!] A(x) = [x^n/n!] A(x)^n (n >= 0). The table of coefficients of x^k/k! in A(x)^n begins: n=0: [1, 0, 0, 0, 0, 0, 0, 0, ...]; n=1: [1, 1, -2, 15, -200, 3920, -102924, 3424946, ...]; n=2: [1, 2, -2, 18, -256, 5240, -142308, 4869676, ...]; n=3: [1, 3, 0, 15, -240, 5220, -147672, 5212410, ...]; n=4: [1, 4, 4, 12, -200, 4640, -137016, 4992008, ...]; n=5: [1, 5, 10, 15, -160, 3920, -120420, 4521370, ...]; n=6: [1, 6, 18, 30, -120, 3240, -102924, 3970596, ...]; n=7: [1, 7, 28, 63, -56, 2660, -86688, 3424946, ...]; ... in which the main diagonal equals this sequence and is found in row n = 1. Related series. Notice the relation to A179421, given by 1/A(x) = 1 - x + 4*x^2/2! - 33*x^3/3! + 440*x^4/4! - 8380*x^5/5! + 211824*x^6/6! - 6771422*x^7/7! + ... + A179421(n)*x^n/n! + ... Also, the following composition of functions A(x/A(x)) = 1 + x - 4*x^2/2! + 39*x^3/3! - 632*x^4/4! + 14620*x^5/5! - 445104*x^6/6! + 16958522*x^7/7! - 781426848*x^8/8! + ... equals A(x) / (A(x) - x*A(x)'), as specified in the definition.
Programs
-
PARI
{a(n) = my(A=[1,1]); for(m=1,n, A=concat(A,0); A[#A] = -Vec(Ser(A)^(#A-1))[#A]/(#A-2) ); n!*A[n+1]} for(n=0,12,print1(a(n),", "))
Formula
E.g.f. A(x) = Sum_{n>=0} a(n)*x^n/n! satisfies:
(1) A(x/A(x)) = A(x) / (A(x) - x*A(x)').
(2) a(n) = [x^n/n!] A(x) = [x^n/n!] A(x)^n, for n >= 0.
(3) A(x) = x*A'(x) / (1 - 1/A(x/A(x))).
Comments