cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A351928 Smallest positive integer k such that 2^k has no '2' in the last n digits of its ternary expansion.

Original entry on oeis.org

2, 2, 6, 8, 8, 8, 20, 24, 24, 24, 72, 186, 186, 332, 332, 1134, 1134, 1134, 1134, 1134, 1134, 25458, 25458, 25458, 25458, 25458, 25458, 159140, 249968, 249968, 249968, 249968, 249968, 249968, 249968, 249968, 9076914, 9076914, 9076914, 9076914, 9076914, 9076914, 90062678
Offset: 1

Views

Author

Robert Saye, Feb 25 2022

Keywords

Comments

The powers of two are required to have at least n ternary digits, i.e., 2^k >= 3^(n-1).
Erdős (~1978) conjectured that 1, 4, and 256 are the only powers of two whose ternary expansion consists solely of 0's and 1's.

Crossrefs

Programs

  • Mathematica
    smallest[n_] := Module[{k}, k = Max[1, Ceiling[(n - 1) Log[2, 3]]];  While[MemberQ[Take[IntegerDigits[2^k, 3], -n], 2], ++k]; k]; Table[smallest[n], {n, 1, 20}]
  • PARI
    a(n) = my(k=max(1, logint(3^(n-1), 2))); while(#select(x->(x==2), Vec(Vecrev(digits(2^k,3)), n)), k++); k; \\ Michel Marcus, Feb 26 2022
    
  • Python
    from sympy.ntheory.digits import digits
    def a(n, startk=1):
        k = max(startk, len(bin(3**(n-1))[2:]))
        pow2 = 2**k
        while 2 in digits(pow2, 3)[-n:]:
            k += 1
            pow2 *= 2
        return k
    an = 0
    for n in range(1, 22):
        an = a(n, an)
        print(an, end=", ") # Michael S. Branicky, Feb 27 2022
    
  • Python
    from itertools import count
    def A351928(n):
        kmax, m = 3**n, (3**(n-1)).bit_length()
        k2 = pow(2,m,kmax)
        for k in count(m):
            a = k2
            while a > 0:
                a, b = divmod(a,3)
                if b == 2:
                    break
            else:
                return k
            k2 = 2*k2 % kmax # Chai Wah Wu, Mar 19 2022
Showing 1-1 of 1 results.