cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351929 Expansion of e.g.f. exp(x - x^3/6).

Original entry on oeis.org

1, 1, 1, 0, -3, -9, -9, 36, 225, 477, -819, -10944, -37179, 16875, 870507, 4253796, 2481921, -101978919, -680495175, -1060229088, 16378166061, 145672249311, 368320357791, -3415036002300, -40270115077983, -141926533828299, 882584266861701, 13970371667206176
Offset: 0

Views

Author

Seiichi Manyama, Feb 26 2022

Keywords

Crossrefs

Programs

  • Mathematica
    m = 27; Range[0, m]! * CoefficientList[Series[Exp[x - x^3/6], {x, 0, m}], x] (* Amiram Eldar, Feb 26 2022 *)
  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(x-x^3/6)))
    
  • PARI
    a(n) = n!*sum(k=0, n\3, (-1/3!)^k*binomial(n-2*k, k)/(n-2*k)!);
    
  • PARI
    a(n) = if(n<3, 1, a(n-1)-binomial(n-1, 2)*a(n-3));

Formula

a(n) = n! * Sum_{k=0..floor(n/3)} (-1/6)^k * binomial(n-2*k,k)/(n-2*k)!.
a(n) = a(n-1) - binomial(n-1,2) * a(n-3) for n > 2.