cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351942 Arithmetic derivative of A181819(n), where A181819(n) = Product prime(e(i)) when n = Product prime(i)^e(i).

Original entry on oeis.org

0, 1, 1, 1, 1, 4, 1, 1, 1, 4, 1, 5, 1, 4, 4, 1, 1, 5, 1, 5, 4, 4, 1, 7, 1, 4, 1, 5, 1, 12, 1, 1, 4, 4, 4, 6, 1, 4, 4, 7, 1, 12, 1, 5, 5, 4, 1, 9, 1, 5, 4, 5, 1, 7, 4, 7, 4, 4, 1, 16, 1, 4, 5, 1, 4, 12, 1, 5, 4, 12, 1, 8, 1, 4, 5, 5, 4, 12, 1, 9, 1, 4, 1, 16, 4, 4, 4, 7, 1, 16, 4, 5, 4, 4, 4, 13, 1, 5, 5, 6, 1, 12
Offset: 1

Views

Author

Antti Karttunen, Apr 02 2022

Keywords

Crossrefs

Coincides with A351943 on the positions given by A130091.

Programs

  • Mathematica
    {0}~Join~Array[If[# < 2, 0, # Total[#2/#1 & @@@ FactorInteger[#]]] &[Apply[Times, Prime[FactorInteger[#][[All, -1]]]]] &, 101, 2] (* Michael De Vlieger, Apr 03 2022 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A181819(n) = factorback(apply(e->prime(e),(factor(n)[,2])));
    A351942(n) = A003415(A181819(n));

Formula

a(n) = A003415(A181819(n)).
a(n) = A351944(n) * A351945(n).