A351959 Composite k such that the primorial inflation of k is a sum of distinct primorial numbers.
8, 9, 27, 32, 40, 42, 115, 228, 252, 530, 575, 928, 1032, 1206, 2595, 5300, 5726, 9320, 10590, 14464, 17376, 21708, 22734, 23212, 25267, 26229, 37360, 38925, 42540, 72768, 80164, 92772, 171960, 220045, 277937, 325152, 372800, 374864, 390169, 404475, 405988, 417798, 421932, 456753, 475587, 686640
Offset: 1
Keywords
Examples
For the initial 14 terms, k and A049345(A108951(k)) are listed below: 8 -> 110, 9 -> 1100, 27 -> 10100, 32 -> 1010, 40 -> 11000, 42 -> 110000, 115 -> 11000000000, 228 -> 1100000000, 252 -> 1010000, 530 -> 110000000000000000, 575 -> 101000000000, 928 -> 110000000000, 1032 -> 1100000000000000, 1206 -> 110000000000000000000.
Links
Crossrefs
Programs
-
PARI
A034386(n) = prod(i=1, primepi(n), prime(i)); A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) }; \\ From A108951 is_in_A276156(n) = { my(p=2); while(n, if((n%p)>1,return(0)); n = n\p; p = nextprime(1+p)); (1); }; isA351959(n) = (n>1 && !isprime(n) && is_in_A276156(A108951(n)));
Comments