A351976 Number of integer partitions of n with (1) as many odd parts as odd conjugate parts and (2) as many even parts as even conjugate parts.
1, 1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 4, 5, 5, 5, 6, 9, 11, 11, 16, 21, 22, 24, 31, 41, 46, 48, 64, 82, 91, 98, 120, 155, 175, 188, 237, 297, 329, 357, 437, 544, 607, 658, 803, 987, 1098, 1196, 1432, 1749, 1955, 2126, 2541, 3071, 3417, 3729, 4406, 5291, 5890, 6426
Offset: 0
Keywords
Examples
The a(n) partitions for selected n: n = 3 8 11 12 15 16 ---------------------------------------------------------- (21) (332) (4322) (4332) (4443) (4444) (4211) (4331) (4422) (54321) (53332) (4421) (4431) (632211) (55222) (611111) (53211) (633111) (55411) (621111) (642111) (633211) (81111111) (642211) (643111) (7321111) (82111111)
Crossrefs
These partitions are ranked by A350949.
A000041 counts integer partitions.
A122111 represents partition conjugation using Heinz numbers.
A195017 = # of even parts - # of odd parts.
There are four statistics:
There are four other possible pairings of statistics:
There are two other possible double-pairings of statistics:
Programs
-
Mathematica
conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]]; Table[Length[Select[IntegerPartitions[n],Count[#,?OddQ]==Count[conj[#],?OddQ]&&Count[#,?EvenQ]==Count[conj[#],?EvenQ]&]],{n,0,30}]