A351978 Number of integer partitions of n for which the number of even parts, the number of odd parts, the number of even conjugate parts, and the number of odd conjugate parts are all equal.
1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 2, 0, 0, 2, 0, 1, 0, 6, 1, 3, 1, 8, 5, 3, 5, 7, 14, 2, 13, 9, 28, 5, 22, 26, 44, 17, 30, 60, 59, 42, 41, 120, 84, 84, 66, 204, 143, 144, 131, 325, 268, 226, 261, 486, 498, 344, 488, 739, 874
Offset: 0
Keywords
Examples
The a(n) partitions for selected n (A = 10): n = 3 12 19 21 23 24 27 -------------------------------------------------------------- 21 4332 633322 643332 644333 84332211 655443 4431 643321 654321 654332 84441111 655542 644311 665211 654431 85322211 665541 653221 655322 86322111 666333 654211 655421 86421111 666531 664111 664331 A522221111 665321 A622211111 666311
Crossrefs
The strict case appears to be the indicator function for A014105.
These partitions are ranked by A350947.
There are four statistics:
There are six pairings of statistics:
- A045931: # of even parts = # of odd parts:
- ordered A098123
- strict A239241
- ranked by A325698
There are three double-pairings of statistics:
A195017 = # of even parts - # of odd parts.
Programs
-
Mathematica
conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]]; Table[Length[Select[IntegerPartitions[n],Count[#,?EvenQ]==Count[#,?OddQ]==Count[conj[#],?EvenQ]==Count[conj[#],?OddQ]&]],{n,0,30}]