cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351995 Square array A(n, k), n, k >= 0, read by antidiagonals upwards; A(n, k) = Sum_{ i >= 0 } b_i * 2^(k*i) where n = Sum_{ i >= 0 } b_i * 2^i.

Original entry on oeis.org

0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 1, 3, 4, 1, 0, 2, 4, 5, 8, 1, 0, 2, 5, 16, 9, 16, 1, 0, 3, 6, 17, 64, 17, 32, 1, 0, 1, 7, 20, 65, 256, 33, 64, 1, 0, 2, 8, 21, 72, 257, 1024, 65, 128, 1, 0, 2, 9, 64, 73, 272, 1025, 4096, 129, 256, 1, 0, 3, 10, 65, 512, 273, 1056, 4097, 16384, 257, 512, 1, 0
Offset: 0

Views

Author

Rémy Sigrist, Feb 27 2022

Keywords

Comments

In other words, in binary expansion of n, replace 2^i by 2^(k*i).

Examples

			Square array A(n, k) begins:
  n\k|  0  1   2   3    4     5     6      7      8       9       10
  ------------------------------------------------------------------
    0|  0  0   0   0    0     0     0      0      0       0        0
    1|  1  1   1   1    1     1     1      1      1       1        1
    2|  1  2   4   8   16    32    64    128    256     512     1024
    3|  2  3   5   9   17    33    65    129    257     513     1025
    4|  1  4  16  64  256  1024  4096  16384  65536  262144  1048576
    5|  2  5  17  65  257  1025  4097  16385  65537  262145  1048577
    6|  2  6  20  72  272  1056  4160  16512  65792  262656  1049600
    7|  3  7  21  73  273  1057  4161  16513  65793  262657  1049601
		

Crossrefs

Programs

  • Mathematica
    A351995[n_, k_] := If[n <= 1, n, Total[2^(k*(Flatten[Position[Reverse[IntegerDigits[n, 2]], 1]] - 1))]];
    Table[A351995[n - k, k], {n, 0, 15}, {k, 0, n}] (* Paolo Xausa, Aug 26 2025 *)
  • PARI
    A(n,k) = { my (v=0, e); while (n, n-=2^e=valuation(n, 2); v+=2^(k*e)); v }

Formula

A(A(n, k), k') = A(n, k*k') for k, k' > 0.
A(n, 0) = A000120(n).
A(n, 1) = n.
A(n, 2) = A000695(n).
A(n, 3) = A033045(n).
A(n, 4) = A033052(n).
A(0, k) = 0.
A(1, k) = 1.
A(2, k) = 2^k.
A(3, k) = 2^k + 1.