A352001 Square array A(n, k), n, k >= 1, read by antidiagonals upwards; A(n, k) = Product_{ i >= 1 } prime(k*i)^e_i where n = Product_{ i >= 1 } prime(i)^e_i (where prime(i) denotes the i-th prime number).
1, 2, 1, 3, 3, 1, 4, 7, 5, 1, 5, 9, 13, 7, 1, 6, 13, 25, 19, 11, 1, 7, 21, 23, 49, 29, 13, 1, 8, 19, 65, 37, 121, 37, 17, 1, 9, 27, 37, 133, 47, 169, 43, 19, 1, 10, 49, 125, 53, 319, 61, 289, 53, 23, 1, 11, 39, 169, 343, 71, 481, 73, 361, 61, 29, 1
Offset: 1
Examples
Square array A(n, k) begins: n\k| 1 2 3 4 5 6 7 8 9 10 ------------------------------------------------------------ 1| 1 1 1 1 1 1 1 1 1 1 2| 2 3 5 7 11 13 17 19 23 29 3| 3 7 13 19 29 37 43 53 61 71 4| 4 9 25 49 121 169 289 361 529 841 5| 5 13 23 37 47 61 73 89 103 113 6| 6 21 65 133 319 481 731 1007 1403 2059 7| 7 19 37 53 71 89 107 131 151 173 8| 8 27 125 343 1331 2197 4913 6859 12167 24389 9| 9 49 169 361 841 1369 1849 2809 3721 5041 10| 10 39 115 259 517 793 1241 1691 2369 3277
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..11325 (antidiagonals n = 1..150 flattened)
Programs
-
Maple
A:= (n, k)-> mul(ithprime(k*numtheory[pi](i[1]))^i[2], i=ifactors(n)[2]): seq(seq(A(d+1-k, k), k=1..d), d=1..12); # Alois P. Heinz, Feb 28 2022
-
Mathematica
Table[If[# == 1, 1, Times @@ Map[Prime[#3*PrimePi[#1]]^#2 & @@ Flatten[{#1, k}] &, FactorInteger[#]]] &[n - k + 1], {n, 11}, {k, n}] // Flatten (* Michael De Vlieger, Feb 28 2022 *)
-
PARI
A(n,k) = { my (f=factor(n)); prod (i=1, #f~, prime(k * primepi(f[i,1])) ^ f[i,2]) }
Comments