A352026 a(n) is the nearest integer to 1/(H(k) - n), where H(k) is the smallest harmonic number that exceeds n.
1, 2, 12, 50, 37, 483, 229, 785, 2059, 4806, 23251, 56470, 327690, 813351, 734186, 2643630, 10476269, 67340402, 268822185, 102740092, 618260119, 2491694355, 7222972533, 50525424196, 44010188391, 164490666033, 131444704333, 548839044705, 1808874061272, 9913711133738
Offset: 0
Keywords
Examples
H(2) = 1/1 + 1/2 = 3/2 = 1.5; H(3) = 1/1 + 1/2 + 1/3 = 11/6 = 1.8333...; H(4) = 1/1 + 1/2 + 1/3 + 1/4 = 25/12 = 2.08333..., which is the first harmonic number that exceeds 2, so a(2) = round(1/(25/12 - 2)) = round(1/(1/12)) = 12. H(10) = 7381/2520 = 2.92896...; H(11) = 83711/27720 = 3.01987..., which is the first harmonic number > 3, and the fractional part of 83711/27720 = 551/27720, so a(3) = round(27720/551) = round(50.30852...) = 50.
Links
- Peter Luschny, Table of n, a(n) for n = 0..100
Programs
-
PARI
a(n)={my(s=0,k=0); while(s<=n, k++;s+=1/k); round(1/(s-n))} \\ Andrew Howroyd, Mar 01 2022
-
SageMath
RR = RealField(1000) def A352026(n): g = RR.euler_constant() u = exp(RR(n) - g) a = u + RR(3/2) - RR(1/(24*u)) + RR(3/(640*u^3)) h = RR(psi(RR(floor(a)))) + g return round(RR(1/(h - RR(n)))) print([A352026(n) for n in range(30)]) # Peter Luschny, Mar 03 2022
Formula
a(n) = round(1/(H(A002387(n)) - n)).
Extensions
More terms from Peter Luschny, Mar 01 2022
Comments