A352696
a(n) = k if the binary representation of k has a 1 (0) exactly where a 1 in the n-th row of A237048 occurs at an odd (even) position, reading from left to right.
Original entry on oeis.org
1, 1, 2, 1, 2, 3, 2, 1, 5, 2, 2, 3, 2, 2, 11, 1, 2, 6, 2, 3, 10, 2, 2, 3, 5, 2, 10, 3, 2, 13, 2, 1, 10, 2, 11, 6, 2, 2, 10, 3, 2, 13, 2, 2, 45, 2, 2, 3, 5, 5, 10, 2, 2, 13, 10, 3, 10, 2, 2, 14, 2, 2, 43, 1, 10, 13, 2, 2, 10, 11, 2, 7, 2, 2, 44, 2, 11, 12, 2, 3, 21, 2, 2, 14, 10
Offset: 1
Sequence values for the first 4 powers of 3: {a(1), a(3), a(9), a(27)} = {1, 2, 5, 10} = {1, 10, 101, 1010}.
Table for a(1..16), a(27) and a(28) together with their lists of the base-2 representation, of the odd/even positions of 1's in the n-th row of A237048, and of the sizes of the parts in SRS(n):
n a(n) odd/even A237048 A237270
1 1 {1} {1} {1}
2 1 {1} {1} {3}
3 2 {1,0} {1,1} {2,2}
4 1 {1} {1,0} {7}
5 2 {1,0} {1,1} {3,3}
6 3 {1,1} {1,0,1} {12}
7 2 {1,0} {1,1,0} {4,4}
8 1 {1} {1,0,0} {15}
9 5 {1,0,1} {1,1,1} {5,3,5}
10 2 {1,0} {1,0,0,1} {9,9}
11 2 {1,0} {1,1,0,0} {6,6}
12 3 {1,1} {1,0,1,0} {28}
13 2 {1,0} {1,1,0,0} {7,7}
14 2 {1,0} {1,0,0,1} {12,12}
15 11 {1,0,1,1} {1,1,1,0,1} {8,8,8}
16 1 {1} {1,0,0,0,0} {31}
...
27 10 {1,0,1,0} {1,1,1,0,0,1} {14,6,6,14}
28 3 {1,1} {1,0,0,0,0,0,1} {56}
...
Cf.
A000975,
A061854,
A174905,
A174973,
A235791,
A237048,
A237270,
A237591,
A237593,
A238443,
A239929,
A247687,
A352030.
-
(* function a237048[ ] is defined in A237048 *)
b237048[n_] := Fold[2#1+Mod[#2, 2]&, 0, Flatten[Position[a237048[n], 1]]]
a352696[n_] := Map[b237048, Range[n]]
a352696[85]
A375611
Numbers k whose symmetric representation of sigma(k) has at least a part with maximum width 2.
Original entry on oeis.org
6, 12, 15, 18, 20, 24, 28, 30, 35, 36, 40, 42, 45, 48, 54, 56, 63, 66, 70, 75, 77, 78, 80, 88, 91, 96, 99, 100, 102, 104, 105, 108, 110, 112, 114, 117, 130, 132, 135, 138, 143, 150, 153, 154, 156, 160, 162, 165, 170, 174, 175, 176, 182, 186, 187, 189, 190, 192, 195, 196, 200
Offset: 1
a(4) = 18 has width pattern 1 2 1 2 1 in its symmetric representation of sigma consisting of a single part, and row 18 in the triangle of A249223 is 1 1 2 1 1.
a(9) = 35 has width pattern 1 0 1 2 1 0 1 in its symmetric representation of sigma consisting of 3 parts, and row 35 in the triangle of A249223 is 1 0 0 0 1 1 2.
Irregular triangle of rows a(n) in triangle of A341970, i.e. of positions of 1's in triangle of A237048, and for the corresponding widths to the diagonal in triangle of A341969:
a(n)| row in A341970 left half of row in A341969
6 | 1 3 1 2
12 | 1 3 1 2
15 | 1 2 3 5 1 0 1 2
18 | 1 3 4 1 2 1
20 | 1 5 1 2
24 | 1 3 1 2
28 | 1 7 1 2
30 | 1 3 4 5 1 2 1 2
35 | 1 2 5 7 1 0 1 2
36 | 1 3 8 1 2 1
...
-
eP[n_] := If[EvenQ[n], FactorInteger[n][[1, 2]], 0]+1
sDiv[n_] := Module[{d=Select[Divisors[n], OddQ]}, Select[Union[d, d*2^eP[n]], #<=row[n]&]]
mW2Q[n_] := Max[FoldWhileList[#1+If[OddQ[#2], 1, -1]&, sDiv[n], #1<=2&]]==2
a375611[m_, n_] := Select[Range[m, n], mW2Q]
a375611[1, 200]
A352061
Numbers n = 2^m * q, m > 0 and q > 1 odd, where the smallest odd divisor p > 1 is the m-th Mersenne prime 2^(m+1) - 1.
Original entry on oeis.org
6, 18, 28, 30, 42, 54, 66, 78, 90, 102, 114, 126, 138, 150, 162, 174, 186, 196, 198, 210, 222, 234, 246, 258, 270, 282, 294, 306, 308, 318, 330, 342, 354, 364, 366, 378, 390, 402, 414, 426, 438, 450, 462, 474, 476, 486, 496, 498, 510, 522, 532, 534, 546, 558, 570, 582, 594
Offset: 1
a(2) = 18 = 2 * 9 = 2^1 * (2^2 - 1) * 3 and a(9) = 90 = 2^1 * (2^2 - 1) * 15 since 3 is Mersenne prime A000668(1).
a(51) = 532 = 2^2 * (2^3 - 1) * 19 since 7 is Mersenne prime A000668(2).
a(757) = 8128 = 2^6 * (2^7 - 1) = 2^6 * (2^A000043(4) - 1) = 2^6 * A000668(4) = A000396(4) is a perfect number.
-
evenoddPartsQ[n_] := Module[{dL=Select[Divisors[n], OddQ], fL=First[FactorInteger[n]], evenE}, evenE=If[First[fL]==2, Last[fL], 0]; n/2^evenE>1&&dL[[2]]==2^(evenE+1)-1]
a352061[n_] := Select[Range[n], evenoddPartsQ]
a352061[600]
Showing 1-3 of 3 results.
Comments