cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A352058 a(n) = Sum_{p|n, p prime} n!/(p!*(n/p)!).

Original entry on oeis.org

0, 1, 1, 6, 1, 120, 1, 840, 10080, 30240, 1, 3659040, 1, 17297280, 3632428800, 259459200, 1, 1490852563200, 1, 845092863014400, 3379030566912000, 28158588057600, 1, 2565331847811532800, 1077167364120207360000, 64764752532480000, 5001134190558105600000
Offset: 1

Views

Author

Seiichi Manyama, Mar 02 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 0; a[n_] := Plus @@ (n!/((p=FactorInteger[n][[;;,1]])!*(n/p)!)); Array[a, 30] (* Amiram Eldar, Mar 02 2022 *)
  • PARI
    a(n) = my(f=factor(n)); sum(k=1, #f~, n!/(f[k, 1]!*(n/f[k, 1])!));
    
  • PARI
    my(N=40, x='x+O('x^N)); concat(0, Vec(serlaplace(sum(k=1, N, isprime(k)*(exp(x^k)-1)/k!))))

Formula

E.g.f.: Sum_{p prime} (exp(x^p) - 1)/p!.
a(n) = 1 if and only if n is prime.

A352060 a(n) = (n - 1)! * omega(n), where omega(n) = number of distinct primes dividing n (A001221).

Original entry on oeis.org

0, 1, 2, 6, 24, 240, 720, 5040, 40320, 725760, 3628800, 79833600, 479001600, 12454041600, 174356582400, 1307674368000, 20922789888000, 711374856192000, 6402373705728000, 243290200817664000, 4865804016353280000, 102181884343418880000, 1124000727777607680000
Offset: 1

Views

Author

Seiichi Manyama, Mar 02 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := (n-1)! * PrimeNu[n]; Array[a, 25] (* Amiram Eldar, Mar 02 2022 *)
  • PARI
    a(n) = (n-1)!*omega(n);
    
  • PARI
    my(N=40, x='x+O('x^N)); concat(0, Vec(serlaplace(-sum(k=1, N, isprime(k)*log(1-x^k)/k))))

Formula

E.g.f.: -Sum_{p prime} log(1-x^p)/p.
Showing 1-2 of 2 results.