A352061 Numbers n = 2^m * q, m > 0 and q > 1 odd, where the smallest odd divisor p > 1 is the m-th Mersenne prime 2^(m+1) - 1.
6, 18, 28, 30, 42, 54, 66, 78, 90, 102, 114, 126, 138, 150, 162, 174, 186, 196, 198, 210, 222, 234, 246, 258, 270, 282, 294, 306, 308, 318, 330, 342, 354, 364, 366, 378, 390, 402, 414, 426, 438, 450, 462, 474, 476, 486, 496, 498, 510, 522, 532, 534, 546, 558, 570, 582, 594
Offset: 1
Keywords
Examples
a(2) = 18 = 2 * 9 = 2^1 * (2^2 - 1) * 3 and a(9) = 90 = 2^1 * (2^2 - 1) * 15 since 3 is Mersenne prime A000668(1). a(51) = 532 = 2^2 * (2^3 - 1) * 19 since 7 is Mersenne prime A000668(2). a(757) = 8128 = 2^6 * (2^7 - 1) = 2^6 * (2^A000043(4) - 1) = 2^6 * A000668(4) = A000396(4) is a perfect number.
Programs
-
Mathematica
evenoddPartsQ[n_] := Module[{dL=Select[Divisors[n], OddQ], fL=First[FactorInteger[n]], evenE}, evenE=If[First[fL]==2, Last[fL], 0]; n/2^evenE>1&&dL[[2]]==2^(evenE+1)-1] a352061[n_] := Select[Range[n], evenoddPartsQ] a352061[600]
Comments