cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352061 Numbers n = 2^m * q, m > 0 and q > 1 odd, where the smallest odd divisor p > 1 is the m-th Mersenne prime 2^(m+1) - 1.

Original entry on oeis.org

6, 18, 28, 30, 42, 54, 66, 78, 90, 102, 114, 126, 138, 150, 162, 174, 186, 196, 198, 210, 222, 234, 246, 258, 270, 282, 294, 306, 308, 318, 330, 342, 354, 364, 366, 378, 390, 402, 414, 426, 438, 450, 462, 474, 476, 486, 496, 498, 510, 522, 532, 534, 546, 558, 570, 582, 594
Offset: 1

Views

Author

Hartmut F. W. Hoft, Mar 04 2022

Keywords

Comments

All numbers in the sequence are pseudoperfect numbers since n = Sum_{i=0..m-1} (2^i * q) + Sum_{i=0..m} (2^i * q/p).
This sequence is a subsequence of A005835. It contains all even perfect numbers (A000396).
The first pseudoperfect number not in this sequence is A005835(2) = 12 = 2^2 * 3 since 3 is the first, not the second Mersenne prime.
The first pseudoperfect number in this sequence that is not in A352030 is 90 = 2*3*3*5 since its symmetric representation of sigma consists of one part with maximum width 3.
Since p = 2^(m+1) - 1 < 2^(m+1) the maximum width of the symmetric representation of sigma(a(n)) is at least 2, for all n.

Examples

			a(2) = 18 = 2 * 9 =  2^1 * (2^2 - 1) * 3  and a(9) = 90 = 2^1 * (2^2 - 1) * 15 since 3 is Mersenne prime A000668(1).
a(51) = 532 = 2^2 * (2^3 - 1) * 19  since 7 is Mersenne prime A000668(2).
a(757) = 8128 = 2^6 * (2^7 - 1) = 2^6 * (2^A000043(4) - 1) = 2^6 * A000668(4) = A000396(4) is a perfect number.
		

Crossrefs

Programs

  • Mathematica
    evenoddPartsQ[n_] := Module[{dL=Select[Divisors[n], OddQ], fL=First[FactorInteger[n]], evenE}, evenE=If[First[fL]==2, Last[fL], 0]; n/2^evenE>1&&dL[[2]]==2^(evenE+1)-1]
    a352061[n_] := Select[Range[n], evenoddPartsQ]
    a352061[600]