cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A378646 Dirichlet convolution of A000027 and A378643.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 4, 2, 3, 1, 4, 1, 3, 3, 8, 1, 4, 1, 6, 3, 3, 1, 8, 2, 3, 4, 8, 1, 1, 1, 16, 3, 3, 3, 10, 1, 3, 3, 10, 1, 1, 1, 8, 8, 3, 1, 16, 2, 8, 3, 8, 1, 12, 3, 12, 3, 3, 1, 10, 1, 3, 8, 32, 3, 1, 1, 8, 3, 9, 1, 16, 1, 3, 8, 8, 3, 1, 1, 20, 8, 3, 1, 8, 3, 3, 3, 16, 1, 14, 3, 8, 3, 3, 3, 32, 1, 8, 8, 14, 1, 1, 1, 18, 13
Offset: 1

Views

Author

Antti Karttunen, Dec 03 2024

Keywords

Comments

First negative value is a(140) = -2.
Odd bisection is not A352063: a(472*2 + 1) = 102 != A352063(472) = A074206(945) = 132. Note that 945 is the first odd abundant number, A005231.

Crossrefs

Cf. A000027, A005101, A005231, A074206, A103977, A378643, A378645 (Dirichlet inverse).

Programs

Formula

a(n) = Sum_{d|n} d*A378643(n/d).
a(n) = A074206(n) if n is a non-abundant number (A263837), and apparently never when n is abundant, A005101.

A378222 Number of ordered factorizations of the odd part of n into factors > 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 3, 1, 1, 1, 2, 1, 4, 1, 1, 3, 1, 1, 3, 1, 3, 2, 1, 1, 3, 1, 1, 3, 1, 1, 8, 1, 1, 1, 2, 2, 3, 1, 1, 4, 3, 1, 3, 1, 1, 3, 1, 1, 8, 1, 3, 3, 1, 1, 3, 3, 1, 2, 1, 1, 8, 1, 3, 3, 1, 1, 8, 1, 1, 3, 3, 1, 3, 1, 1, 8, 3, 1, 3, 1, 3, 1, 1, 2, 8, 2, 1, 3, 1, 1, 13
Offset: 1

Views

Author

Antti Karttunen, Nov 24 2024

Keywords

Crossrefs

Bisections: A352063, and the sequence itself.

Programs

  • Mathematica
    f[1] = 1; f[n_] := f[n] = DivisorSum[n, f[#] &, # < n &]; a[n_] := f[n/2^IntegerExponent[n, 2]]; Array[a, 100] (* Amiram Eldar, May 01 2025 *)
  • PARI
    A000265(n) = (n>>valuation(n,2));
    A074206(n) = if(n>1, sumdiv(n, i, if(iA074206(i))), n); \\ From A074206
    A378222(n) = A074206(A000265(n));

Formula

a(n) = A074206(A000265(n)).
For all n >= 1, a(2n) = a(n).
For all n >= 0, a(2n+1) = A352063(n) = A002033(2*n) = A074206(2*n+1).
Showing 1-2 of 2 results.