A352064 Irregular triangle T(n,k) where row n lists the positions of n in A275314.
1, 2, 3, 4, 6, 8, 5, 9, 12, 16, 10, 18, 24, 32, 7, 15, 20, 27, 36, 48, 64, 14, 30, 40, 54, 72, 96, 128, 21, 25, 28, 45, 60, 80, 81, 108, 144, 192, 256, 42, 50, 56, 90, 120, 160, 162, 216, 288, 384, 512, 11, 35, 63, 75, 84, 100, 112, 135, 180, 240, 243, 320, 324, 432, 576, 768, 1024
Offset: 1
Examples
Triangle begins: 1; 2; 3, 4; 6, 8; 5, 9, 12, 16; 10, 18, 24, 32; 7, 15, 20, 27, 36, 48, 64; 14, 30, 40, 54, 72, 96, 128; 21, 25, 28, 45, 60, 80, 81, 108, 144, 192, 256; 42, 50, 56, 90, 120, 160, 162, 216, 288, 384, 512; ... Illustration of relationship of terms of row n and partitions of (n-1) such that all parts m are restricted to prime predecessors. We show the partitions in parentheses, adding 1 to each part m below in brackets to take the product. The products are terms in row n in this sequence. 1 = (1); [2] row 2: 2; . 2 = (2), (1+1); [3] [2*2] row 3: 3, 4; . 3 = (2+1), (1+1+1); [3*2] [2*2*2] row 4: 6, 8; . 4 = (4), (2+2), (2+1+1), (1+1+1+1); [5] [3*3] [3*2*2] [2*2*2*2] row 5: 5, 9, 12, 16; . 5 = (4+1), (2+2+1), (2+1+1+1), (1+1+1+1+1); [5*2] [3*3*2] [3*2*2*2] [2*2*2*2*2] row 6: 10, 18, 24, 32; etc.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10673 (rows n = 1..40, flattened)
- Leonhard Euler, Tentamen novae theoriae mvsicae ex certissimis harmoniae principiis dilvcide expositae, Petropoli, ex typographia Academiae scientiarvm (1739), 41.
Programs
-
Mathematica
With[{n = 12}, Take[#, n] &@ Values@ KeySort@ PositionIndex@ Array[Total[Flatten[ConstantArray[#1 - 1, #2] & @@@ FactorInteger[#]]] &, 2^n]] // TableForm (* syntactically simple, or, more efficiently *) f[m_] := Block[{s = {Prime@ PrimePi[m + 1] - 1}}, KeySort@ Merge[#, Identity] &@ Join[{1 -> {}}, Reap[Do[If[# <= m, Sow[# -> s]; AppendTo[s, Last@ s], If[Last@ s == 1, s = DeleteCases[s, 1]; If[Length@ s == 0, Break[], s = MapAt[Prime[PrimePi[# + 1] - 1] - 1 &, s, -1]], s = MapAt[Prime[PrimePi[# + 1] - 1] - 1 &, s, -1]]] &@ Total[s], {i, Infinity}]][[-1, -1]] ]]; Map[Union[Times @@ # & /@ #] &, Values@ f[40] + 1] // Flatten
Formula
A280954(n) = length of row n.
Comments