A352084 Integers m such that wt(m) divides wt(m^2) where wt(m) = A000120(m) is the binary weight of m.
1, 2, 3, 4, 6, 7, 8, 12, 14, 15, 16, 21, 24, 28, 30, 31, 32, 37, 42, 45, 48, 53, 56, 60, 62, 63, 64, 69, 73, 74, 79, 81, 83, 84, 90, 91, 96, 106, 112, 120, 124, 126, 127, 128, 133, 137, 138, 141, 146, 148, 155, 157, 158, 159, 161, 162, 165, 166, 168, 177, 180
Offset: 1
Examples
37_10 = 100101_2, digsum_2(37) = 1+1+1 = 3; then 37^2 = 1369_10 = 10101011001_2, digsum_2(1369) = 1+1+1+1+1+1 = 6; as 3 divides 6, 37 is a term.
Links
- Martin Ehrenstein, Table of n, a(n) for n = 1..10000
- Diophante, A1730 - Des chiffres à sommer pour un entier (in French).
Crossrefs
Programs
-
Mathematica
Select[Range[180], Divisible[Total[IntegerDigits[#^2, 2]], Total[IntegerDigits[#, 2]]] &] (* Amiram Eldar, Mar 03 2022 *)
-
PARI
isok(m) = !(hammingweight(m^2) % hammingweight(m)); \\ Michel Marcus, Mar 03 2022
-
Python
def ok(n): return n > 0 and bin(n**2).count('1')%bin(n).count('1') == 0 print([m for m in range(1, 200) if ok(m)]) # Michael S. Branicky, Mar 03 2022
Extensions
More terms from Amiram Eldar, Mar 03 2022
Comments