A352086 a(n) is the smallest positive integer k such that wt(k^2) / wt(k) = n where wt(k) = A000120(k) is the binary weight of k.
1, 21, 2697, 4736533, 14244123157, 4804953862344753
Offset: 1
Examples
We have 21_10 = 10101_2, so wt(21) = 3 ones; then 21^2 = 441_10 = 110111001_2, so wt(21^2) = 6 ones; as 6/3 = 2 and 21 is the smallest integer k such that wt(k^2) / wt(k) = 2, hence a(2) = 21.
Links
- Diophante, A1730 - Des chiffres à sommer pour un entier (in French).
- Wojciech Muła, Nathan Kurz and Daniel Lemire, Faster Population Counts using AVX2 Instructions, arXiv:1611.07612 [cs.DS], Sep 05 2018.
Programs
-
Mathematica
r[n_] := Total[IntegerDigits[n^2, 2]]/Total[IntegerDigits[n, 2]]; seq[max_, nmax_] := Module[{s = Table[0, {max}], c = 0, n = 1, i}, While[c < max && n < nmax, i = r[n]; If[IntegerQ[i] && s[[i]] == 0, c++; s[[i]] = n]; n+=2]; TakeWhile[s, # > 0 &]]; seq[4, 5*10^6] (* Amiram Eldar, Mar 06 2022 *)
-
Python
from gmpy2 import popcount aDict=dict() for k in range(1, 10**11, 2): if popcount(k*k)%popcount(k)==0: n=popcount(k*k)//popcount(k) if not n in aDict: print(n, k); aDict[n]=k # Martin Ehrenstein, Mar 16 2022
Formula
a(n) > 2^(n^2/2) for n > 1. - Charles R Greathouse IV, Mar 16 2022
Extensions
a(3)-a(5) from David A. Corneth, Mar 06 2022
a(6) -- using the Muła et al. Faster Population Counts algorithm -- from Martin Ehrenstein, Mar 15 2022
Comments