cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352108 Numbers k such that k and k+1 are both lazy-tribonacci-Niven numbers (A352107).

Original entry on oeis.org

1, 20, 39, 75, 115, 135, 155, 175, 176, 184, 204, 215, 264, 567, 684, 704, 725, 791, 846, 872, 1089, 1104, 1115, 1134, 1183, 1184, 1211, 1224, 1407, 1575, 1840, 1880, 2064, 2075, 2151, 2191, 2232, 2259, 2260, 2415, 2529, 2583, 2624, 2780, 2820, 2848, 2888, 2988
Offset: 1

Views

Author

Amiram Eldar, Mar 05 2022

Keywords

Examples

			20 is a term since 20 and 21 are both lazy-tribonacci-Niven numbers: the maximal tribonacci representation of 20, A352103(20) = 10111, has 4 1's and 20 is divisible by 4, and the maximal tribonacci representation of 21, A352103(20) = 11001, has 3 1's and 21 is divisible by 3.
		

Crossrefs

Subsequence of A352107.
Subsequences: A352109, A352110.

Programs

  • Mathematica
    t[1] = 1; t[2] = 2; t[3] = 4; t[n_] := t[n] = t[n - 1] + t[n - 2] + t[n - 3]; trib[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[t[k] <= m, k++]; k--; AppendTo[s, k]; m -= t[k]; k = 1]; IntegerDigits[Total[2^(s - 1)], 2]]; q[n_] := Module[{v = trib[n]}, nv = Length[v]; i = 1; While[i <= nv - 3, If[v[[i ;; i + 3]] == {1, 0, 0, 0}, v[[i ;; i + 3]] = {0, 1, 1, 1}; If[i > 3, i -= 4]]; i++]; i = Position[v, _?(# > 0 &)]; If[i == {}, False, Divisible[n, Total[v[[i[[1, 1]] ;; -1]]]]]]; Select[Range[3000], q[#] && q[# + 1] &]