A352132 Numbers k such that k, k+4, 3*k+4 and 3*k+8 are all semiprimes.
6, 10, 118, 119, 129, 155, 287, 295, 299, 319, 377, 413, 447, 469, 511, 538, 629, 681, 699, 717, 785, 831, 865, 913, 1003, 1073, 1077, 1111, 1115, 1137, 1141, 1145, 1267, 1343, 1345, 1379, 1393, 1437, 1469, 1509, 1687, 1817, 1835, 1919, 1923, 1981, 2167, 2173, 2177, 2195, 2245, 2429, 2479, 2569
Offset: 1
Keywords
Examples
a(4) = 119 is a term because 119 = 7*17, 119+4 = 123 = 3*41, 3*119+4 = 361 = 19^2 and 3*119+8 = 365 = 5*73 are semiprimes.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
filter:= proc(x) numtheory:-bigomega(x) = 2 and numtheory:-bigomega(x+4) = 2 and numtheory:-bigomega(3*x+4) = 2 and numtheory:-bigomega(3*x+8)=2 end proc: select(filter, [$1..3000]);
-
Mathematica
okQ[k_] := AllTrue[{k, k+4, 3k+4, 3k+8}, PrimeOmega[#] == 2&]; Select[Range[3000], okQ] (* Jean-François Alcover, May 16 2023 *)
Comments