A352140 Numbers whose prime factorization has all even prime indices and all odd exponents.
1, 3, 7, 13, 19, 21, 27, 29, 37, 39, 43, 53, 57, 61, 71, 79, 87, 89, 91, 101, 107, 111, 113, 129, 131, 133, 139, 151, 159, 163, 173, 181, 183, 189, 193, 199, 203, 213, 223, 229, 237, 239, 243, 247, 251, 259, 263, 267, 271, 273, 281, 293, 301, 303, 311, 317
Offset: 1
Keywords
Examples
The terms together with their prime indices begin: 1 = 1 3 = prime(2)^1 7 = prime(4)^1 13 = prime(6)^1 19 = prime(8)^1 21 = prime(4)^1 prime(2)^1 27 = prime(2)^3 29 = prime(10)^1 37 = prime(12)^1 39 = prime(6)^1 prime(2)^1 43 = prime(14)^1 53 = prime(16)^1 57 = prime(8)^1 prime(2)^1 61 = prime(18)^1 71 = prime(20)^1
Crossrefs
Programs
-
Mathematica
Select[Range[100],And@@EvenQ/@PrimePi/@First/@FactorInteger[#]&&And@@OddQ/@Last/@FactorInteger[#]&]
-
Python
from sympy import factorint, primepi def ok(n): if n%2 == 0: return False return all(primepi(p)%2==0 and e%2==1 for p, e in factorint(n).items()) print([k for k in range(318) if ok(k)]) # Michael S. Branicky, Mar 12 2022
Comments