A352141 Numbers whose prime factorization has all even indices and all even exponents.
1, 9, 49, 81, 169, 361, 441, 729, 841, 1369, 1521, 1849, 2401, 2809, 3249, 3721, 3969, 5041, 6241, 6561, 7569, 7921, 8281, 10201, 11449, 12321, 12769, 13689, 16641, 17161, 17689, 19321, 21609, 22801, 25281, 26569, 28561, 29241, 29929, 32761, 33489, 35721
Offset: 1
Keywords
Examples
The terms together with their prime indices begin: 1 = 1 9 = prime(2)^2 49 = prime(4)^2 81 = prime(2)^4 169 = prime(6)^2 361 = prime(8)^2 441 = prime(2)^2 prime(4)^2 729 = prime(2)^6 841 = prime(10)^2 1369 = prime(12)^2 1521 = prime(2)^2 prime(6)^2 1849 = prime(14)^2 2401 = prime(4)^4 2809 = prime(16)^2 3249 = prime(2)^2 prime(8)^2 3721 = prime(18)^2 3969 = prime(2)^4 prime(4)^2
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Range[1000],#==1||And@@EvenQ/@PrimePi/@First/@FactorInteger[#]&&And@@EvenQ/@Last/@FactorInteger[#]&]
-
Python
from itertools import count, islice from sympy import factorint, primepi def A352141_gen(startvalue=1): # generator of terms >= startvalue return filter(lambda k:all(map(lambda x: not (x[1]%2 or primepi(x[0])%2), factorint(k).items())),count(max(startvalue,1))) A352141_list = list(islice(A352141_gen(),30)) # Chai Wah Wu, Mar 18 2022
Comments