A352163 a(n) is the least prime p such that p+3 is divisible by exactly n distinct primes.
2, 3, 67, 907, 10007, 170167, 3233227, 74364287, 2156564407, 79792883167, 2874700358527, 106363913265607, 4999103923483667, 204963260862830467, 15485628496253425507, 640920116718070879687, 45505328286983032457987, 3048856995227863174685327, 191219157742953165026391187, 14692441860003072638808605267
Offset: 1
Keywords
Examples
a(4) = 907 because 907 is prime and 907+3 = 910 = 2*5*7*13 has 4 prime divisors.
Programs
-
Maple
f:= proc(p) nops(numtheory:-factorset(p+3)) end proc: V:= Vector(8): count:= 0: p:= 1: while count < 8 do p:= nextprime(p); v:= f(p); if V[v] = 0 then V[v]:= p; count:= count+1; fi od: convert(V,list);
Extensions
More terms from David A. Corneth, Mar 06 2022
Comments