A352133
Centered cube numbers that can be written as sums of two other cubes in at least one way.
Original entry on oeis.org
91, 189, 1729, 12691, 68705, 97309, 201159, 400491, 2484755, 2554741, 3587409, 3767491, 8741691, 15407765, 26122131, 54814509, 121861441, 139361059, 168632191, 223264809, 236019771, 295233841, 355957875, 448404255, 508476241, 525518721, 1041378589, 2593625571, 2746367559, 2874318841, 4328420941, 5193550999
Offset: 1
91 belongs to the sequence because 91 = 3^3 + 4^3 = 6^3 + (-5)^3.
Cf.
A005898,
A001235,
A272885,
A352134,
A352135,
A352136,
A352220,
A352221,
A352222,
A352223,
A352224,
A352225.
A352134
Numbers k such that the centered cube number k^3 + (k+1)^3 is equal to at least one other sum of two cubes.
Original entry on oeis.org
3, 4, 9, 18, 32, 36, 46, 58, 107, 108, 121, 123, 163, 197, 235, 301, 393, 411, 438, 481, 490, 528, 562, 607, 633, 640, 804, 1090, 1111, 1128, 1293, 1374, 1436, 1517, 1524, 1538, 1543, 1698, 2018, 2047, 2361, 3032, 3152, 3280, 3321, 4131, 4995, 5092, 5659, 5687, 5700
Offset: 1
3 belongs to the sequence as 3^3 + 4^3 = 6^3 + (-5)^3 = 91.
From _Jon E. Schoenfield_, Mar 11 2022: (Start)
The table below lists the first 15 pairs of integers (b,c) such that b > c+1 and b^3 + c^3 is a centered cube number k^3 + (k+1)^3 = d.
Note that there are two pairs (b,c) for k=121 and two for k=163. For these and for all numbers k for which there is more than one pair (b,c), the pair with the smallest value of b is chosen as the one whose values (b,c) appear in A352135 and A352136, i.e., A352135(n) and A352136(n) are the values (b,c) in that pair whose value of b is smallest.
Thus, the 15 solutions listed in the table account for only the first 13 terms of this sequence and of A352133, A352135, and A352136.
.
n a(n)=k d(n) b(n) c(n)
-- ------ ------- ---- ----
1 3 91 6 -5
2 4 189 6 -3
3 9 1729 12 1
4 18 12691 28 -21
5 32 68705 41 -6
6 36 97309 46 -3
7 46 201159 151 -148
8 58 400491 90 -69
9 107 2484755 171 -136
10 108 2554741 181 -150
11 121 3587409 153 18 (153 < 369)
* 121 3587409 369 -360 ((b,c) omitted from A352135,A352136)
12 123 3767491 160 -69
13 163 8741691 206 -5 (206 < 254)
* 163 8741691 254 -197 ((b,c) omitted from A352135,A352136)
(End)
Cf.
A005898,
A001235,
A272885,
A352133,
A352135,
A352136,
A352220,
A352221,
A352222,
A352223,
A352224,
A352225.
A352135
Numbers j in pairs (j,k), with j <> k +- 1, such that the sum of their cubes is equal to a centered cube number.
Original entry on oeis.org
6, 6, 12, 28, 41, 46, 151, 90, 171, 181, 153, 160, 206, 1016, 292, 378, 513, 531, 831, 633, 618, 3753, 710, 1119, 1410, 830, 1246, 1307, 1623, 1506, 1629, 1752, 1845, 1917, 1917, 2019, 10815, 2140, 22331, 2871, 3660, 4481, 3881, 4230, 43356, 9955, 6294, 76621, 22988, 7170, 21253
Offset: 1
6 belongs to the sequence as 6^3 + (-5)^3 = 3^3 + 4^3 = 91.
Cf.
A005898,
A001235,
A272885,
A352133,
A352134,
A352136,
A352220,
A352221,
A352222,
A352223,
A352224,
A352225.
A352136
Numbers k in pairs (j,k), with j <> k +- 1, such that the sum of their cubes is equal to a centered cube number.
Original entry on oeis.org
-5, -3, 1, -21, -6, -3, -148, -69, -136, -150, 18, -69, -5, -1011, 107, 93, -236, -218, -740, -312, -21, -3746, -125, -984, -1319, -359, -963, 712, -1152, -815, 178, -569, -706, -382, 346, -982, -10794, -69, -22320, -1866, -2831, -3246, 1614, -1719, -43343, -9456, -197, -76606, -22757, -865, -20976
Offset: 1
-5 belongs to the sequence as 6^3 + (-5)^3 = 3^3 + 4^3 = 91.
Cf.
A005898,
A001235,
A272885,
A352133,
A352134,
A352135,
A352220,
A352221,
A352222,
A352223,
A352224,
A352225.
A352223
Second members D of two non-consecutive numbers such that the sums of their cubes are equal to centered cube numbers and to at least one other sum of two cubes, i.e., A = B^3 + (B+1)^3 = C^3 + D^3 = E^3 + F^3.
Original entry on oeis.org
18, -5, 107, -125, 712, -1152, -1719, -865, -5370, -7870, 2518, -963, -29949, -20030, 111491, 87797, 261536, 2274319, -140357, -3938794, -139674130, -792131385
Offset: 1
18 belongs to the sequence as 153^3 + 18^3 = 121^3 + 122^3 = 369^3 + (-360)^3 = 3587409.
Cf.
A005898,
A001235,
A272885,
A352133,
A352134,
A352135,
A352136,
A352220,
A352221,
A352222,
A352224,
A352225.
A352225
Second numbers F = a(n) of two non-consecutive numbers (E, F) different from (C, D) = (A352222(n), A352223(n)), such that the sums of their cubes are equal to centered cube numbers and to at least one other sum of two cubes, i.e. A = B^3 + (B+1)^3 = C^3 + D^3 = E^3 + F^3.
Original entry on oeis.org
-360, -197, -362, -2805, -3866, -10081, -29511, -5905, -227790, -10012, -24548, -28995, -875133, -73040, -615709, -457027, -3044074, -17549681, -4232837, -4999714, -13724102460, -94822721073
Offset: 1
-360 belongs to the sequence as 369^3 + (-360)^3 = 121^3 + 122^3 = 153^3 + 18^3 = 3587409.
Cf.
A005898,
A001235,
A272885,
A352133,
A352134,
A352135,
A352136,
A352220,
A352221,
A352222,
A352223,
A352224.
A352220
Centered cube numbers that can be written as sums of two other cubes in at least two ways.
Original entry on oeis.org
3587409, 8741691, 26122131, 355957875, 2593625571, 2746367559, 70607389041, 367954598375, 7006302268875, 7916366521691, 8091803325879, 28332679374909, 144757538551899, 1026401875608375, 9339629571431315, 14295468330521189, 49873257556492139, 42892025638971003759
Offset: 1
3587409 belongs to the sequence because 3587409 = 121^3 + 122^3 = 153^3 + 18^3 = 369^3 + (-360)^3.
Cf.
A005898,
A001235,
A272885,
A352133,
A352134,
A352135,
A352136,
A352221,
A352222,
A352223,
A352224,
A352225.
A352221
Numbers k such that the centered cube number k^3 + (k+1)^3 is equal to at least two other sums of two cubes.
Original entry on oeis.org
121, 163, 235, 562, 1090, 1111, 3280, 5687, 15187, 15818, 15934, 24196, 41674, 80062, 167147, 192629, 292154, 2778319, 3532195, 7906844, 58400437, 248878534
Offset: 1
121 is a term because 121^3 + 122^3 = 153^3 + 18^3 = 369^3 + (-360)^3 = 3587409.
Cf.
A005898,
A001235,
A272885,
A352133,
A352134,
A352135,
A352136,
A352220,
A352222,
A352223,
A352224,
A352225.
A352222
First members C of two non-consecutive numbers such that the sums of their cubes are equal to centered cube numbers and to at least one other sum of two cubes, i.e., A = B^3 + (B+1)^3 = C^3 + D^3 = E^3 + F^3.
Original entry on oeis.org
153, 206, 292, 710, 1307, 1623, 4230, 7170, 19275, 20331, 20063, 30486, 55572, 101135, 199614, 238806, 317427, 3145700, 4450334, 10163157, 146173525, 808182534
Offset: 1
153 belongs to the sequence as 153^3 + 18^3 = 121^3 + 122^3 = 369^3 + (-360)^3 = 3587409.
Cf.
A005898,
A001235,
A272885,
A352133,
A352134,
A352135,
A352136,
A352220,
A352221,
A352223,
A352224,
A352225.
A352755
Positive centered cube numbers that can be written as the difference of two positive cubes: a(n) = t*(3*t^2 + 4)*(t^2*(3*t^2 + 4)^2 + 3)/4 with t = 2*n-1 and n > 0.
Original entry on oeis.org
91, 201159, 15407765, 295233841, 2746367559, 16448122691, 73287987409, 264133278045, 811598515091, 2202365761759, 5410166901741, 12249942682409, 25914353312575, 51755729480091, 98389720844009, 179211321358741, 314429627203659, 533744613620855, 879807401606341, 1412624924155809
Offset: 1
a(1) = 91 belongs to the sequence because 91 = 3^3 + 4^3 = 6^3 - 5^3 and 6 - 5 = 1 = 2*1 - 1.
a(2) = 201159 belongs to the sequence because 201159 = 46^3 + 47^3 = 151^3 - 148^3 and 151 - 148 = 3 = 2*2 - 1.
a(3) = (2*3 - 1)*(3*(2*3 - 1)^2 + 4)*((2*3 - 1)^2*(3*(2*3 - 1)^2 + 4)^2 + 3)/4 = 15407765.
- Vladimir Pletser, Table of n, a(n) for n = 1..10000
- A. Grinstein, Ramanujan and 1729, University of Melbourne Dept. of Math and Statistics Newsletter: Issue 3, 1998.
- Vladimir Pletser, Euler's and the Taxi-Cab relations and other numbers that can be written twice as sums of two cubed integers, submitted. Preprint available on ResearchGate, 2022.
- Eric Weisstein's World of Mathematics, Centered Cube Number
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
Cf.
A005898,
A001235,
A272885,
A352133,
A352134,
A352135,
A352136,
A352221,
A352222,
A352223,
A352224,
A352225,
A352756,
A352757,
A352758,
A352759,
A355751,
A355752,
A355753.
Showing 1-10 of 17 results.
Comments