cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352248 Number of pairs of Goldbach partitions of A352240(n), (p,q) and (r,s) with p,q,r,s prime and p < r <= s < q, such that all integers in the open intervals (p,r) and (s,q) are composite.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 3, 3, 4, 1, 2, 2, 2, 3, 1, 4, 6, 1, 1, 4, 2, 3, 1, 2, 7, 8, 5, 4, 1, 3, 1, 2, 5, 7, 1, 3, 1, 3, 6, 4, 7, 2, 4, 1, 1, 3, 1, 2, 5, 2, 7, 14, 4, 1, 2, 3, 1, 2, 2, 1, 2, 7, 1, 10, 1, 8, 6, 1, 4, 2, 4, 7, 1, 4, 1, 3, 3, 8, 2, 8, 12, 2, 3, 1, 3, 5
Offset: 1

Views

Author

Wesley Ivan Hurt, Mar 09 2022

Keywords

Examples

			a(13) = 4; The Goldbach partitions of A352240(13) = 60 are: 7+53 = 13+47 = 17+43 = 19+41 = 23+37 = 29+31. The 4 pairs of Goldbach partitions of 60 that are being counted are: (13,47),(17,43); (17,43),(19,41); (19,41),(23,37); and (23,37),(29,31). Note that the pair (7,53),(13,47) is not counted since there is a prime in the interval (7,13), namely 11.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[Sum[KroneckerDelta[NextPrime[k], i]*KroneckerDelta[NextPrime[2 n - i], 2 n - k]*(PrimePi[k] - PrimePi[k - 1]) (PrimePi[2 n - k] - PrimePi[2 n - k - 1]) (PrimePi[i] - PrimePi[i - 1]) (PrimePi[2 n - i] - PrimePi[2 n - i - 1]), {k, i}], {i, n}];
    Table[If[a[n] > 0, a[n], {}], {n, 100}] // Flatten