A352248 Number of pairs of Goldbach partitions of A352240(n), (p,q) and (r,s) with p,q,r,s prime and p < r <= s < q, such that all integers in the open intervals (p,r) and (s,q) are composite.
1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 3, 3, 4, 1, 2, 2, 2, 3, 1, 4, 6, 1, 1, 4, 2, 3, 1, 2, 7, 8, 5, 4, 1, 3, 1, 2, 5, 7, 1, 3, 1, 3, 6, 4, 7, 2, 4, 1, 1, 3, 1, 2, 5, 2, 7, 14, 4, 1, 2, 3, 1, 2, 2, 1, 2, 7, 1, 10, 1, 8, 6, 1, 4, 2, 4, 7, 1, 4, 1, 3, 3, 8, 2, 8, 12, 2, 3, 1, 3, 5
Offset: 1
Keywords
Examples
a(13) = 4; The Goldbach partitions of A352240(13) = 60 are: 7+53 = 13+47 = 17+43 = 19+41 = 23+37 = 29+31. The 4 pairs of Goldbach partitions of 60 that are being counted are: (13,47),(17,43); (17,43),(19,41); (19,41),(23,37); and (23,37),(29,31). Note that the pair (7,53),(13,47) is not counted since there is a prime in the interval (7,13), namely 11.
Links
- Eric Weisstein's World of Mathematics, Goldbach Partition
- Wikipedia, Goldbach's conjecture
- Index entries for sequences related to Goldbach conjecture
- Index entries for sequences related to partitions
Programs
-
Mathematica
a[n_] := Sum[Sum[KroneckerDelta[NextPrime[k], i]*KroneckerDelta[NextPrime[2 n - i], 2 n - k]*(PrimePi[k] - PrimePi[k - 1]) (PrimePi[2 n - k] - PrimePi[2 n - k - 1]) (PrimePi[i] - PrimePi[i - 1]) (PrimePi[2 n - i] - PrimePi[2 n - i - 1]), {k, i}], {i, n}]; Table[If[a[n] > 0, a[n], {}], {n, 100}] // Flatten